给定一个长度为 m 的整数序列 a1,a2,…,am。
序列中每个元素的值 ai 均满足 1≤ai≤n。
当一个值为 i 的元素和一个值为 j 的元素相邻时,可以产生的收益为 wi,j。
现在,我们可以从序列中删除最多 k 个元素,删除一些元素后,原本不相邻的元素可能会变得相邻。
序列的收益和为所有相邻元素对产生的收益之和,例如一个长度为 3 的整数序列 1,3,2 的收益和为 w1,3+w3,2。
请问,通过利用删除操作,能够得到的序列的最大收益和是多少?
输入格式
第一行包含三个整数 n,k,m。
第二行包含 m 个整数 a1,a2,…,am。
接下来 n 行,每行包含 n 个整数,其中第 i 行第 j 列的数表示 wi,j。
输出格式
输出序列的最大收益和。
数据范围
对于 30% 的数据,1≤n,k,m≤20。
对于 100% 的数据,1≤n,k,m≤200,0≤wi,j≤107,1≤ai≤n。
数据保证 wi,j=wj,i,wi,i=0。
输入样例:
4 1 3
1 4 2
0 3 0 1
3 0 0 0
0 0 0 0
1 0 0 0
输出样例:
3
样例解释
初始序列收益和为 w1,4+w4,2=1+0=1。
删除中间的 4 后,序列 1,2 的收益和为 w1,2=3。
思路
参考最长上升子序列
- f[i][j]表示从0 ~ i-1中删j个点后,0~i的收益最大值
- 或者说成前i个点中删j个数,保留i的最大收益
- 按i来划分集合,可以划分为0~i-1,其中0就代表前0个点删j个数,等价于不删.
- f[i][j]可以从f[u][?]转移过来,我们对f[i][j]做一个转换
- 既然要删j个数,可以先把后面[u+1,i-1]给删了,这样会删除i-1-u个数
- 然后再在前面[0,u]中删j-(i-1-u)个数,此时k点和i点临近,可加贡献w[a[u]][a[j]]
故可以得到如下状态转移方程 f[i][j] = max(f[i][j],f[u][j-(i-u-1)]+w[a[u]][a[i]]);
详细注释代码
/*
* @Author: ACCXavier
* @Date: 2021-05-12 19:09:15
* @LastEditTime: 2021-05-12 19:09:15
* Bilibili:https://space.bilibili.com/7469540
* 题目地址:https://www.acwing.com/problem/content/description/3502/
* @keywords: 序列最大收益
*/
#include <algorithm>
#include <cstring>
#include <iostream>
using namespace std;
const int N = 210;
int n, k, m;
int a[N]; //记录元素值
int w[N][N];//w[i][j]表示i->j的收益
int f[N][N];//f[i][j]表示从0~i-1中删j个点后,0~i的收益最大值
int main()
{
scanf("%d%d%d",&n,&k,&m);
for(int i = 1; i <= m; ++ i){
scanf("%d",a+i);//从1开始因为收益和的值从1开始
}
for(int i = 1; i <= n;++ i){
for(int j = 1; j <= n; ++ j){
scanf("%d",&w[i][j]);
}
}
memset(f,-0x3f,sizeof f);
f[1][0] = 0;//一定要记住初始化
// 第1个点删0个数保留1的收益为0
for (int i = 1; i <= m; i ++ ){
for (int j = 0; j <= k; j ++ ){//j从0~k,不删就是0
for(int u = 1; u < i; ++ u){//最多删i-1个
if(j >= i - u - 1){//注意是>=,=的条件下就说明既可以把后面删完,也可以直接分配到0~i中
//故要计算状态
f[i][j] = max(f[i][j],f[u][j-(i-u-1)]+w[a[u]][a[i]]);
}
}
}
}
int res = 0;
for(int i = 0; i <= k; ++ i){//从0开始也就是包括不删的情况
res = max(res,f[m][i]);
// cout<<f[m][i]<<endl;
}
cout<<res<<endl;
return 0;
}