AtCoder Beginner Contest 404 C-G(无F)题解

C. Cycle Graph?

题意

给你一个 N N N 个顶点 M M M 条边的简单(无重边、自环)无向图,第 i i i 条边连接节点 A i A_i Ai B i B_i Bi,判断这个图是不是一个环。

思路

首先一个图是环,要满足点数等于边数,即 N = M N=M N=M

其次,这个图必须连通,可以通过 DFS \text{DFS} DFS BFS \text{BFS} BFS 搜索判断是否连通(从任意一点开始搜,结束后检查是否每个点都已到达过);

最后,每个点的度数(所连接的顶点数)必须为 2 2 2

可以证明,只要满足上述三个条件,这个图一定是一个环。

C++ 代码

#include<bits/stdc++.h>
using namespace std;
const int maxn=200005;
int n,m;
int deg[maxn];
vector<int> g[maxn];
bool used[maxn];
void dfs(int v){
	used[v]=true;
	for(int x:g[v]){
		if(!used[x]){
			dfs(x);
		}
	}
}
int main(){
	cin>>n>>m;
	if(n!=m){
		cout<<"No\n";
		return 0;
	}
	for(int i=1;i<=m;i++){
		int u,v; cin>>u>>v;
		g[u].push_back(v);
		g[v].push_back(u);
	}
	dfs(1);
	for(int i=1;i<=n;i++){
		if(!used[i]||g[i].size()!=2){
			cout<<"No\n";
			return 0;
		}
	}
	cout<<"Yes\n";
	return 0;
}

D. Goin’ to the Zoo

题意

N N N 个动物园,动物园 i i i 入场费为 C i C_i Ci M M M 种动物,第 j j j 种动物可以在共 K j K_j Kj 个动物园看到,分别为动物园 A j , 1 , A j , 2 ,   . . . , A j , K j A_{j,1},A_{j,2},\ ...,A_{j,K_j} Aj,1,Aj,2, ...,Aj,Kj

要看每种动物至少两次,至少花多少钱。

注:只要花一次 C i C_i Ci,就可以进入动物园 i i i 一次,就可以看里面的每个动物一次;若花两次,则可进入两次,看里面的动物两次

思路

由于 N ≤ 10 , M ≤ 100 N \le 10,M\le 100 N10,M100,可以想到用状态压缩(不是dp)枚举。

状态压缩,就是把状态压缩到一个数字里

大致思路如下:

140 140 140 为例,三进制数为 12012 12012 12012

这样, 1 ∼ 3 N 1\sim 3^N 13N 的每个数字都有了实际含义

只要枚举 1 ∼ 3 N 1\sim3^N 13N 的每个数,判断这样参观动物园能否达成“每种动物至少看两次”的目标,若可以,则记录答案,取最小值。

时间复杂度 O ( N M ⋅ 3 N ) O(NM·3^N ) O(NM3N)

C++ 代码

#include<bits/stdc++.h>
#define int long long
using namespace std;
const int inf=3e18;
const int maxn=1000005;
int c[maxn];
int k[105];
int v[105][105];
int mask[105];
int n,m;
signed main(){
	cin>>n>>m;
	for(int i=1;i<=n;i++){
		cin>>c[i];
	}
	for(int i=1;i<=m;i++){
		cin>>k[i];
		for(int j=0;j<k[i];j++){
			cin>>v[i][j];
		}
	}
	int ans=inf;
	for(int msk=0;msk<pow(3ll,n);msk++){
		memset(mask,0,sizeof(mask));//mask为当前数字所对应的三进制数
		int num=0;//num为花费
		int p=msk;
		for(int i=1;i<=n;i++){
			num+=(p%3)*c[i];
			for(int j=1;j<=m;j++){
				for(int a=0;a<k[j];a++){
					if(v[j][a]==i) mask[j]+=p%3;
				}
			}
			p/=3;
		}
		bool flag=true;
		for(int j=1;j<=m;j++){
            if(mask[j]<2) flag=false;
        }
		if(flag) ans=min(ans,num);
	}
	cout<<ans<<endl;
	return 0;
}

E. Bowls and Beans

题意

N N N 个碗排成一排,编号为 0 ∼ N − 1 0\sim N-1 0N1,碗 i i i 中有 A i A_i Ai 个豆子,上面写着一个数字 C i C_i Ci

每次操作可以将碗 i i i 里的豆子可以放到之前 i − C i ∼ i − 1 i-C_i \sim i-1 iCii1 中的任意碗里,并且可以任意分配每个碗里放几颗。

最初碗 0 0 0 中没有豆子,问:将所有豆子都移到碗 0 0 0 中,最少需要多少步。

思路

贪心好像也可以,但是我不会!!

N ≤ 2000 N \le 2000 N2000,考虑 O ( N 2 ) O(N^2) O(N2) 动态规划。

动态规划基本三步:

  1. 设计 DP \text{DP} DP 状态:

​ 定义 f i f_i fi 表示将编号 ≥ i \ge i i 的所有碗中的豆子全部移到碗 i i i 中的最小步骤;

  1. 初始化:

​ 设最后一个有豆子的碗为 p p p,则对于 i = p ∼ n − 1 i=p\sim n-1 i=pn1 f i = 0 f_i=0 fi=0(不需要操作),其余初始 f i = ∞ f_i=\infty fi=

  1. 转移顺序及转移方程:

    顺序:由于每个碗里的豆子只能往前移,为避免转移产生影响后续计算,应从后往前转移;

    满足以下条件时, f i = min ⁡ ( f i , f j + 1 ) f_i=\min(f_i,f_j+1) fi=min(fi,fj+1)

    • 条件1: j > i j>i j>i

    • 条件2:碗 j j j 的豆子可以移到碗 i i i 中,即 j − i ≤ C j j-i \le C_j jiCj

    • 条件3:若 i − j ≥ 2 i-j\ge2 ij2 i + 1 i+1 i+1 j − 1 j-1 j1 之间的任何一个碗都没有豆子(否则不可能一步就完成 j → i j \rightarrow i ji 的操作)。

C++ 代码

#include<bits/stdc++.h>
#define int long long
using namespace std;
const int inf=3e18;
const int maxn=2005;
int n;
int c[maxn],f[maxn];
bool a[maxn];
signed main(){
	cin>>n;
	for(int i=1;i<n;i++) cin>>c[i];
	for(int i=1;i<n;i++) cin>>a[i];
    
    //初始化
	for(int i=0;i<n;i++) f[i]=inf;
    int pos;
    for(int i=n-1;i>=0;i--){
        f[i]=0;
        if(a[i]){
            pos=i-1;
        	break;
        }
    }
    
    //转移
	for(int i=pos;i>=0;i--){//为了避免产生后效性,从后往前遍历
		for(int j=i+1;j<n;j++){//为了满足条件1,j=i+1开始
			if(j-i<=c[j]) f[i]=min(f[i],f[j]+1);//为了满足条件2
			if(a[j]) break;//为了满足条件3,只要遇到了有豆子的碗就退出
		}
	}
	cout<<f[0]<<endl;
	return 0;
}

G. Specified Range Sums

题意

有三个长度为 M M M 的序列 L , R , S L,R,S L,R,S,你要判断是否存在一个长度为 N N N正整数 序列 A A A,满足以 ∑ j = L i R i A j = S i \sum_{j=L_i}^{R_i} A_j=S_i j=LiRiAj=Si

若存在,找到最小的 ∑ j = 1 N A j \sum_{j=1}^N A_j j=1NAj;否则,输出 -1

思路

首先,我们考虑将求和转换为前缀和,即定义 C i = ∑ j = 1 i A j C_i=\sum_{j=1}^iA_j Ci=j=1iAj,则 C R i − C L i − 1 = S i C_{R_i}-C_{L_i-1}=S_i CRiCLi1=Si

建立有向图,顶点编号为 0 ∼ n 0 \sim n 0n,这样连边: ( L i − 1 , R i ) = S i (L_i-1,R_i)=S_i (Li1,Ri)=Si ( R i , L i − 1 ) = − S i (R_i,L_i-1)=-S_i (Ri,Li1)=Si。另外,由于是正整数序列,所以 ( i + 1 , i ) = − 1 (i+1,i)=-1 (i+1,i)=1

我们需要计算 n → 0 n \rightarrow 0 n0 的最短路,答案即为这个值的相反数。

注意:无解时图中有负环,所以 Dijkstra \text{Dijkstra} Dijkstra 不可以。考虑可以处理负环的 Bellman-Ford \text{Bellman-Ford} Bellman-Ford 算法(不会没关系,下面讲):

与图上动态规划相似,定义 d i s i dis_i disi 表示 从 n n n i i i 的最短路, d i s n = 0 dis_n=0 disn=0,其余为 ∞ \infty

共进行 N N N 次操作,每次操作如下:

  • 对于每一条有向边 ( u , v ) = w (u,v)=w (u,v)=w d i s v = min ⁡ ( d i s v , d i s u + w ) dis_v=\min(dis_v,dis_u+w) disv=min(disv,disu+w),共 M M M 条边。

复杂度为 O ( N M ) O(NM) O(NM),通常把上述操作称作 松弛(relax)

在这 N N N 次松弛之后,再执行第 N + 1 N+1 N+1 次操作,若还可以继续执行松弛操作,就说明图中存在负环,无解,输出 − 1 -1 1

最终答案即为 − d i s 0 -dis_0 dis0

C++ 代码

#include<bits/stdc++.h>
#define int long long
using namespace std;
const int inf=3e18;
const int maxn=4005;
int n,m;
struct Node{
	int u,v,w;
};
vector<Node> v;
int dis[maxn];
signed main(){
	cin>>n>>m;
    
    //建图 连边
	for(int i=1;i<=m;i++){
		int l,r,s;
		cin>>l>>r>>s;
		v.push_back({l-1,r,s});
		v.push_back({r,l-1,-s});
	}
	for(int i=0;i<n;i++) v.push_back({i+1,i,-1});
    
	//初始化
	for(int i=1;i<=n;i++) dis[i]=inf;
	dis[n]=0;
    
    //Bellman-Ford计算最短路  直接将第N+1次操作放入循环中
	for(int i=1;i<=n+1;i++){
		for(Node e:v){
			if(dis[e.v]>dis[e.u]+e.w){
				if(i==n+1){//若已经执行完n+1次松弛还可以继续执行,则无解
					cout<<-1<<endl;
					return 0;
				}
				dis[e.v]=dis[e.u]+e.w;
			}
		}
	}
	cout<<-dis[0]<<endl;	
	return 0;
}
AtCoder Beginner Contest 134 是一场 AtCoder 的入门级比赛,以下是每道题的简要题解: A - Dodecagon 题目描述:已知一个正十二边形的边长,求它的面积。 解题思路:正十二边形的内角为 $150^\circ$,因此可以将正十二边形拆分为 12 个等腰三角形,通过三角形面积公式计算面积即可。 B - Golden Apple 题目描述:有 $N$ 个苹果和 $D$ 个盘子,每个盘子最多可以装下 $2D+1$ 个苹果,求最少需要多少个盘子才能装下所有的苹果。 解题思路:每个盘子最多可以装下 $2D+1$ 个苹果,因此可以将苹果平均分配到每个盘子中,可以得到最少需要 $\lceil \frac{N}{2D+1} \rceil$ 个盘子。 C - Exception Handling 题目描述:给定一个长度为 $N$ 的整数序列 $a$,求除了第 $i$ 个数以外的最大值。 解题思路:可以使用两个变量 $m_1$ 和 $m_2$ 分别记录最大值和次大值。遍历整个序列,当当前数不是第 $i$ 个数时,更新最大值和次大值。因此,最后的结果应该是 $m_1$ 或 $m_2$ 中较小的一个。 D - Preparing Boxes 题目描述:有 $N$ 个盒子和 $M$ 个物品,第 $i$ 个盒子可以放入 $a_i$ 个物品,每个物品只能放在一个盒子中。现在需要将所有的物品放入盒子中,每次操作可以将一个盒子内的物品全部取出并分配到其他盒子中,求最少需要多少次操作才能完成任务。 解题思路:首先可以计算出所有盒子中物品的总数 $S$,然后判断是否存在一个盒子的物品数量大于 $\lceil \frac{S}{2} \rceil$,如果存在,则无法完成任务。否则,可以用贪心的思想,每次从物品数量最多的盒子中取出一个物品,放入物品数量最少的盒子中。因为每次操作都会使得物品数量最多的盒子的物品数量减少,而物品数量最少的盒子的物品数量不变或增加,因此这种贪心策略可以保证最少需要的操作次数最小。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值