线性时不变(LTI)系统

线性时不变(LTI)系统

典型系统

线性系统:

线性系统是指同时满足叠加性齐次性的系统。所谓叠加性是指当几个输入信号共同作用于系统时,总的输出等于每个输入单独作用时产生的输出之和;齐次性是指当输入信号增大若干倍时,输出也相应增大同样的倍数。不满足叠加性和齐次性的系统即为非线性系统。

更加形象的表达就是

image-20221229151900229

  1. 齐次性:任意 x ( t ) ⟶ 系统 y ( t ) x(t)\overset{系统}{\longrightarrow} y(t) x(t)系统y(t) ,有 a x ( t ) ⟶ 系统 a y ( t ) ( ∀ a ϵ R ) ax(t)\overset{系统}{\longrightarrow} ay(t) \left ( \forall a\epsilon R \right ) ax(t)系统ay(t)(aϵR)
  2. 叠加性:任意 { x 1 ( t ) ⟶ 系统 y 1 ( t ) x 2 ( t ) ⟶ 系统 y 2 ( t ) . . . . . . x n ( t ) ⟶ 系统 y n ( t ) \left\{\begin{matrix} x_1(t)\overset{系统}{\longrightarrow} y_1(t)\\ x_2(t)\overset{系统}{\longrightarrow} y_2(t)\\ ......\\ x_n(t)\overset{系统}{\longrightarrow} y_n(t) \end{matrix}\right. x1(t)系统y1(t)x2(t)系统y2(t)......xn(t)系统yn(t) ,有 x 1 + x 2 + . . . + x n ⟶ 系统 y 1 + y 2 + . . . + y n x_1+x_2+...+x_n\overset{系统}{\longrightarrow} y_1+y_2+...+y_n x1+x2+...+xn系统y1+y2+...+yn

一个系统同时满足①、②则它是线性系统,否则它是非线性系统。

连续系统是否线性系统离散系统是否线性系统
y ( t ) = a x ( t ) y(t)=ax(t) y(t)=ax(t) y [ n ] = a x [ n ] y\left [ n \right ] =ax\left [ n \right ] y[n]=ax[n]
y ( t ) = t x ( t ) y(t)=tx(t) y(t)=tx(t) y [ n ] = n x [ n ] y\left [ n \right ] =nx\left [ n \right ] y[n]=nx[n]
y ( t ) = d x ( t ) d t y(t)=\frac{\mathrm{d} x(t)}{\mathrm{d} t} y(t)=dtdx(t) y [ n ] = x [ n ] − x [ n − 1 ] y\left [ n \right ] =x\left [ n \right ]-x\left [ n-1 \right ] y[n]=x[n]x[n1]
y ( t ) = ∫ − ∞ t x ( τ ) d τ y(t)=\int_{-\infty}^{t} x(\tau )d\tau y(t)=tx(τ)dτ y [ n ] = ∑ k = − ∞ n x [ k ] y\left [ n \right ] =\sum_{k=-\infty }^{n} x\left [ k \right ] y[n]=k=nx[k]
y ( t ) = a x ( t ) + 1 y(t)=ax(t)+1 y(t)=ax(t)+1 y [ n ] = a x [ n ] + 1 y\left [ n \right ] =ax\left [ n \right ]+1 y[n]=ax[n]+1
y ( t ) = a x 2 ( t ) y(t)=ax^2(t) y(t)=ax2(t) y [ n ] = a x 2 [ n ] y\left [ n \right ] =ax^2\left [ n \right ] y[n]=ax2[n]
y ( t ) = e x ( t ) y(t)=e^{x(t)} y(t)=ex(t)

通过上表的例子,我们能整理出一个不那么严谨的判据:①、线性系统每一项都有 x x x 。②、每一项的 x x x 都是一次。

例如: y [ n ] = n x [ n − 2 ] + 3 x [ n + 1 ] y\left [ n \right ] =nx\left [ n-2 \right ] +3x\left [ n+1 \right ] y[n]=nx[n2]+3x[n+1] y ( t ) = 3 x ( t ) + 2 x ( t − 2 ) y\left ( t \right ) =3x\left ( t \right ) +2x\left ( t-2 \right ) y(t)=3x(t)+2x(t2) 都是线性系统,而 y ( t ) = 3 x ( t ) + 2 y\left ( t \right ) =3x\left ( t \right ) +2 y(t)=3x(t)+2 是非线性系统。

时不变系统:

时不变系统(time-invariant system)数学上可精确定义为在时间平移变换下保持形式不变的系统。

∀   x ( t ) ⟶ 系统 y ( t ) \forall \ x(t)\overset{系统}{\longrightarrow} y(t)  x(t)系统y(t) ,则 ∀   t 0 ϵ R \forall\ t_0\epsilon R  t0ϵR ,有   x ( t − t 0 ) ⟶ 系统 y ( t − t 0 ) \ x(t-t_0)\overset{系统}{\longrightarrow}y(t-t_0)  x(tt0)系统y(tt0) 。满足这个条件,它是时不变系统,否则时变系统。

系统是否时不变系统
y ( t ) = x ( t − 1 ) y(t)=x(t-1) y(t)=x(t1)
y ( t ) = e x ( t + 1 ) y(t)=e^{ x(t+1) } y(t)=ex(t+1)
y ( t ) = x ( 2 t ) y(t)=x(2t) y(t)=x(2t)
y ( t ) = t x ( t ) y(t)=tx(t) y(t)=tx(t)
y [ n ] = x [ 3 − n ] y\left [ n \right ] = x\left [ 3-n \right ] y[n]=x[3n]

判据: t t t 只在 x x x 的括号里;② t t t 只能是 t t t ,不能是 2 t 2t 2t − 2 t -2t 2t t 2 t^2 t2 等其他函数。

因果系统:

因果系统是指当且仅当输入信号激励系统时,才会出现输出响应的系统,也就是说,因果系统的响应不会出现在输入信号激励系统的以前时刻;因果系统,即输入的响应不可能在此输入到达的时刻之前出现的系统,也就是说系统的输出仅与当前与过去的输入有关,而与将来的输入无关的系统,系统的这种特性称为因果特性,符合因果性的系统称为因果系统或非超,与之相对的有非因果系统和反因果系统。

系统是否因果系统
y ( t ) = x ( t − 1 ) y(t)=x(t-1) y(t)=x(t1)
y ( t ) = x ( t + 1 ) y(t)=x(t+1) y(t)=x(t+1)
y ( t ) = x ( 2 t ) y(t)=x(2t) y(t)=x(2t)
y [ n ] = x [ 3 − n ] y\left [ n \right ] = x\left [ 3-n \right ] y[n]=x[3n]

判据: x x x 括号里的数恒小于 y y y 括号里的数。

无记忆系统:

一个系统无记忆,是指 y ( t ) y(t) y(t) 的值仅仅只依赖于 x ( t ) x(t) x(t)

系统是否无记忆系统
y ( t ) = x 2 ( t ) + e x ( t ) y\left ( t \right ) = x^2\left ( t \right ) + e^{x(t)} y(t)=x2(t)+ex(t)
y ( t ) = x ( t − 1 ) y(t)=x(t-1) y(t)=x(t1)
y [ n ] = x 3 [ n ] y\left [ n \right ] = x^3\left [ n \right ] y[n]=x3[n]
y [ n ] = x [ 2 n ] y\left [ n \right ] = x\left [ 2n \right ] y[n]=x[2n]

判据: x x x y y y 括号里的数完全一样。

可逆系统:

如果一个系统在不同输入下,导致不同输出,那么该系统就是可逆的,在强调一遍是不同输入(输入一定要不同)导致不同输出。也就是说 x ( t ) x(t) x(t) y ( t ) y(t) y(t) 一一对应的映射。

系统是否可逆系统
y ( t ) = x ( t − 1 ) y(t)=x(t-1) y(t)=x(t1)
y ( t ) = x 2 ( t ) y(t)=x^2(t) y(t)=x2(t)
y ( t ) = x ( 2 t ) y(t)=x(2t) y(t)=x(2t)
y [ n ] = ∑ k = − ∞ n x [ k ] y\left [ n \right ] =\sum_{k=-\infty }^{n} x\left [ k \right ] y[n]=k=nx[k]
y ( t ) = ∫ − ∞ t x ( τ ) d τ y(t)=\int_{-\infty}^{t} x(\tau )d\tau y(t)=tx(τ)dτ
y ( t ) = d x ( t ) d t y(t)=\frac{\mathrm{d} x(t)}{\mathrm{d} t} y(t)=dtdx(t)

判据:能不能有唯一反函数。

稳定系统:

如果一个系统的输入是有界的(即输入的幅度不是无界增长的),并且输出也有界,则该系统具有稳定性。对于 x ( t ) ⟶ 系统 y ( t ) x(t)\overset{系统}{\longrightarrow} y(t) x(t)系统y(t) ,若 x ( t ) x(t) x(t) 有界 ⟶ \longrightarrow y ( t ) y(t) y(t) 有界。

系统是否稳定系统
y ( t ) = e x ( t ) y(t)=e^{x(t)} y(t)=ex(t)
y ( t ) = x 3 ( t ) − 2 x 2 ( t ) + x ( t ) + 1 y(t)=x^3(t)-2x^2(t)+x(t)+1 y(t)=x3(t)2x2(t)+x(t)+1
y ( t ) = d x ( t ) d t y(t)=\frac{\mathrm{d} x(t)}{\mathrm{d} t} y(t)=dtdx(t)
y ( t ) = ∫ − ∞ t x ( τ ) d τ y(t)=\int_{-\infty}^{t} x(\tau )d\tau y(t)=tx(τ)dτ
y [ n ] = ∑ k = − ∞ n x [ k ] y\left [ n \right ] =\sum_{k=-\infty }^{n} x\left [ k \right ] y[n]=k=nx[k]
y [ n ] = x [ n ] − x [ n − 1 ] y\left [ n \right ] =x\left [ n \right ]-x\left [ n-1 \right ] y[n]=x[n]x[n1]

所谓线性时不变系统(Linear Time-Invariant System) 就是既满足线性又满足时不变性的系统。

研究线性时不变(LTI)系统是因为这样的系统是最简单且有效的,如果我们知道LTI系统的一个 x ( t ) x(t) x(t) 对应的 y ( t ) y(t) y(t) ,那么我们就知道所有 x ( t ) x(t) x(t) 对应的 y ( t ) y(t) y(t)

参考资料

典型的系统_哔哩哔哩_bilibili

  • 8
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AMS132

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值