非奇异矩阵的多种判断方式

基本概念:

n阶方阵A是非奇异矩阵的充要条件是A为可逆矩阵。

下面列举几种判断方式(前提条件:矩阵是个n*n的方阵):

  1. 一个矩阵非奇异当且仅当行列式不为0。

  1. 一个矩阵非奇异当且仅当其所代表的线性变换是个自同构。

  1. 一个矩阵非奇异(正定)当且仅当它的每个特征值都大于0。

  1. 一个矩阵非奇异当且仅当它的秩为n。

  1. 一个矩阵A非奇异的充要条件是n*2n阵(A,En)可经过有限次的初等变换化为(En,B)。

  1. 如果矩阵A严格对角占优,则矩阵A非奇异。

下面给出上述定理的相关证明:

定理1:一个矩阵非奇异当且仅当行列式不为0

Proof:行列式表示线性变换的缩放比和方向。若行列式为0,表示线性变换后的维度降低。若维度降低,则不为可逆矩阵。

定理2:一个矩阵非奇异当且仅当其所代表的线性变换是个自同构。

PS:自同构:对于一个集合A,A中定义一个闭合运算○,存在一个A与A之间的映射φ ,若φ为一双射,且对于A内任意元素a,b都有φ(a○b)=φ(a)○φ(b)则这个映射φ 叫做一个对于○ 来说的A的自同构(automorphism)。

Proof:线性变换可以用矩阵表示,若线性变换自同构,则表示线性映射可逆,是个双射,则所代表的矩阵是可逆的,即矩阵非奇异。

定理3:一个矩阵正定(非奇异)当且仅当它的每个特征值都大于0。

PS:正定矩阵是一类特殊的实对称矩阵,如果一个矩阵M满足对于任何非零向量z,都有zTMz> 0,那么这个矩阵是正定矩阵。

Proof:所有特征值的乘积是方阵的行列式,若每个特征值都>0,则满足定理1,矩阵非奇异。

定理4:一个矩阵非奇异当且仅当它的秩为n。

Proof矩阵的秩表示线性变换后的空间维度。由定理1得,行列式为零意味着维度降低,因此方阵不满秩

定理5:一个矩阵A非奇异的充要条件是n*2n阵(A,En)可经过有限次的初等变换化为(En,B)。

Proof

故:

定理6:如果矩阵A严格对角占优,则矩阵A非奇异。

Proof

  • 5
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值