选择排序
选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理如下。首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。
选择排序的主要优点与数据移动有关。如果某个元素位于正确的最终位置上,则它不会被移动。选择排序每次交换一对元素,它们当中至少有一个将被移到其最终位置上,因此对n个元素的表进行排序总共进行至多n-1次交换。在所有的完全依靠交换去移动元素的排序方法中,选择排序属于非常好的一种。
选择排序的分析
排序过程如下图所示:
动态示意图如下图所示:
其中红色表示当前最小值,黄色表示已排序序列,蓝色表示当前位置。
代码实现:
#!usr/bin/env python
# -*- coding:utf-8 _*-
"""
@author: Administrator
@file: 13-2.py
@time: 2022/05/22
@desc:
"""
# 选择排序
def select_sort(list1):
"""选择排序"""
n = len(list1)
for i in range(n-1): # 第一个值的下标确定(假设它是最小值的下标) 与后面n-1个值比较找出最小值的下标 然后调换
min_index = i
# 找到之后最小值的下标 与min_index调换 这样min_index就是最小值的下标
for j in range(i+1, n):
if list1[min_index] > list1[j]:
min_index = j
list1[i], list1[min_index] = list1[min_index], list1[i]
if __name__ == "__main__":
ll = [12, 3, 45, 8, 44, 31, 29, 132, -3, 0, 6, 12]
print(ll)
select_sort(ll)
print(ll)
测试结果:
时间复杂度:
最优时间复杂度:O(n^2)
最坏时间复杂度:O(n^2)
稳定性:不稳定(考虑升序每次选择最大的情况)
选择排序演示: