RSA算法原理图解

RSA是一种非对称加密算法,它的安全性依赖于将两个大素数相乘得到的大整数的质因数分解难题。加密过程中,使用公钥对明文进行加密,解密则需要用到对应的私钥。该算法涉及到欧拉函数、欧拉定理以及模运算的逆元等数学概念。在实际应用中,Miller-Rabin素数测试用于验证候选素数,确保密钥的安全性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

RSA的安全基于大数分解的难度。其公钥和私钥是一对大素数的函数。从一个公钥和密文恢复出明文的难度,等价于分解两个大素数之积(这是公认的数学难题)。大整数质因数分解。

参考资料:

RSA算法原理

https://www.kancloud.cn/kancloud/rsa_algorithm/48484

欧拉函数

https://www.cnblogs.com/handsomecui/p/4755455.html

欧拉定理

https://zhuanlan.zhihu.com/p/35060143

密码学中模运算的逆元求解

https://blog.csdn.net/qq_43090158/article/details/98945050

扩展欧几里得算法

https://www.jianshu.com/p/9a5f60efeb0d

RSA加密算法 -解密可靠性的证明

https://www.cnblogs.com/soldierback/p/11601824.html

Miller-Rabin(素数测试算法)

https://www.cnblogs.com/nonames/p/12431151.html

RSA加密与破解

https://www.cnblogs.com/vamei/p/3480994.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值