求和式及其运算规则

我在复习数据结构——时间复杂度计算时,发现很多地方都会用到求和式及其运算规则,故写下本文用以记录。

描述不准确、过程不严谨之处,还请理解。

  

一、求和式的基本概念

高中时我们学过数列,以及数列求和

根据数列前n项和的定义: S_{n}=a_{1}+a_{2}+a_{3}+\cdots+a_{n-1}+a_{n}

而等式右边的多项式可以简写为求和式:  a_{1}+a_{2}+a_{3}+\cdots+a_{n-1}+a_{n}=\sum\limits_{i=1}^{n} a_{i}

求和符号\sum (读作sigma)

求和下限 i=1 :代表求和变量 i 从1开始递增

求和上限 n :代表递增到n结束

求和表达式 a_{i}: 一般是通项公式(只不过是把通项下标符号从 n 换成 i 而已)

求和变量 i 从1递增到n,则求和表达式 a_{i} 从a_{1}变化到a_{n}

求和式整体即从 a_{1} 累加到a_{n} :\sum\limits_{i=1}^{n} a_{i}=a_{1}+a_{2}+a_{3}+\cdots+a_{n-1}+a_{n}

    

如果学过for循环就很好理解了

for(i=1; i<=n; i++)
{
	sum+=a[i];
}

i=1 时 ,当前项 a_{i}=a_{1},求和sum= a_{1},i++自增到2

i=2 时 ,当前项 a_{i}=a_{2},求和sum= a_{1}+a_{2},i++自增到3

i=3 时 ,当前项 a_{i}=a_{3},求和sum= a_{1}+a_{2}+a_{3},i++自增到4

……

i=n-1 时 ,当前项 a_{i}=a_{n-1},求和sum= a_{1}+a_{2}+a_{3}+\cdots+a_{n-1},i++自增到n

i=n 时 ,当前项 a_{i}=a_{n},求和sum= a_{1}+a_{2}+a_{3}+\cdots+a_{n-1}+a_{n},i++自增到n+1

i=n+1 时,i<=n为假,循环结束

最终求和sum的值: sum=\sum\limits_{i=1}^{n} a_{i}=a_{1}+a_{2}+a_{3}+\cdots+a_{n-1}+a_{n}

  

  

二、等差、等比数列的求和式计算

【例1】等差数列\{n\}:1,2,3,……,n

通项公式为 a_{n}=n,首项为1,公差为1

根据上面得出的公式

S_{n}=a_{1}+\cdots + a_{n}=\sum\limits_{i=1}^{n} a_{i}

代入得

S_{n}=1+\cdots + n=\sum\limits_{i=1}^{n} i

这里的求和表达式 i 就是通项公式 a_{i}=i(只不过是把通项下标符号从 n 换成 i 而已) 

反过来,已知求和式,就可以展开为多项式之和

\sum\limits_{i=1}^{n} i=1+\cdots + n

求和变量 i 从1递增到n,求和表达式也是 i ,则整个求和式就是从1累加到n

根据等差数列前n项和公式 S_{n}=\frac{n(a_{1}+a_{n})}{2}

可算出求和式的值为

\sum\limits_{i=1}^{n} i=1+\cdots + n=\frac{n(a_{1}+a_{n})}{2}=\frac{n(n+1)}{2}

 \sum\limits_{i=1}^{n} i=\frac{n(n+1)}{2}

  

【例2】等比数列\{2^{n}\}:2,4,8,……,2^{n}

通项公式为 a_{n}=2^{n},首项为2,公比为2

数列前n项和,用求和式表达并展开

S_{n}=\sum\limits_{i=1}^{n} 2^{i}=2+\cdots + 2^{n}

根据等比数列前n项和公式 S_{n}=\frac{a_{1}(1-q^{n})}{1-q}

可算出求和式的值为

\sum\limits_{i=1}^{n} 2^{i}=2+\cdots + 2^{n}=\frac{a_{1}(1-q^{n})}{1-q}=2^{n+1}-2

即 \sum\limits_{i=1}^{n} 2^{i}=2^{n+1}-2

  

  

三、求和式的线性规则之数乘规则

【例3】求和式 \sum\limits_{i=1}^{n}1

其中求和表达式不是变量 ,而是常数1

展开求和式

\sum\limits_{i=1}^{n}1 =\overbrace{1+\cdots +1}^{n} = n

因为求和表达式是常数1,不随求和变量 i 变化

所以一直是1在累加,n个1相加,结果自然是n

同理,如果求和表达式是2,n个2相加,结果是2n

\sum\limits_{i=1}^{n}2 =\overbrace{2+\cdots +2}^{n} = 2n

同理,如果求和表达式是3,n个3相加,结果是3n

\sum\limits_{i=1}^{n}3 =\overbrace{3+\cdots +3}^{n} = 3n

因为\sum\limits_{i=1}^{n}1= n,如果把 \sum\limits_{i=1}^{n}1 作为一个整体

那么上面两式的结果可以替换为

\sum\limits_{i=1}^{n}2 = 2n =2\times n=2\times \sum\limits_{i=1}^{n}1=2 \sum\limits_{i=1}^{n}1

\sum\limits_{i=1}^{n}3 = 3n =3\times n=3\times \sum\limits_{i=1}^{n}1=3 \sum\limits_{i=1}^{n}1

可以看到,其实就是把常数提出来

\sum\limits_{ i=1}^{n}2=2\sum\limits_{ i=1}^{n}1 =2\times (\overbrace{1+\cdots +1}^{n}) =2\times n = 2n

\sum\limits_{ i=1}^{n}3=3\sum\limits_{ i=1}^{n}1 =3\times (\overbrace{1+\cdots +1}^{n}) =3\times n = 3n

提取常数可以理解为乘法分配律的逆运算 

c\times a+c\times b=c\times (a+b)

令a=1, b=1,将 c=2和c=3 分别代入得

2\times 1+2\times 1=2\times (1+1)

3\times 1+3\times 1=3\times (1+1)

只不过现在不是2项,而是n项 

\overbrace{2\times1+\cdots+2\times1}^{n}=2\times (\overbrace{1+\cdots+1}^{n})=2\sum\limits_{ i=1}^{n}1

\overbrace{3\times1+\cdots+3\times1}^{n}=3\times (\overbrace{1+\cdots+1}^{n})=3\sum\limits_{ i=1}^{n}1

  

【例4】求和式 \sum\limits_{i=1}^{n} 2i

当通项公式为变量时也同样适用

\sum\limits_{i=1}^{n} 2i=2+\cdots + 2n=\frac{n(a_{1}+a_{n})}{2}=\frac{n(2n+2)}{2}=n(n+1)

将常数提出,计算结果与上式相同

\sum\limits_{i=1}^{n} 2i=2\sum\limits_{i=1}^{n} i=2\times(1+\cdots + n)=2\times(\frac{n(n+1)}{2})=n(n+1)


求和式的数乘规则(提取常数):

\sum\limits_{i=1}^{n} (c\cdot a_{i})=c\sum\limits_{i=1}^{n} a_{i} (其中c为常数)


注意,这里的常数c不一定是整数,也可以是小数

【例5】当 c=\frac{1}{2},\ a_{i}=i 时,求和式 \sum\limits_{i=1}^{n} \frac{i}{2}

\sum\limits_{i=1}^{n} \frac{i}{2}=\frac{1}{2} \sum\limits_{i=1}^{n} i=\frac{1}{2} \times(1+\cdots + n)=\frac{1}{2}\times(\frac{n(n+1)}{2})=\frac{n(n+1)}{4}

  

  

四、求和式的线性规则之加法规则

【例6】求和式 \sum\limits_{i=1}^{n} (2^{i}+i)

可以看到里面有两个通项公式,左边是等比数列,右边是等差数列

将其展开得

\sum\limits_{i=1}^{n} (2^{i}+i)=(2^{1}+1)+(2^{2}+2)+(2^{3}+3)+\cdots + (2^{n}+n)

根据加法交换律,将等比数列的项都交换到左边,等差数列的项都交换到右边

\sum\limits_{i=1}^{n} (2^{i}+i)= (2^{1}+2^{2}+2^{3}+\cdots + 2^{n})+(1+2+3+\cdots +n)

可以看到,实际上就是两个数列分别求和再相加

将等式右边改写为求和式的形式

\sum\limits_{i=1}^{n} (2^{i}+i)=\sum\limits_{i=1}^{n} 2^{i}+\sum\limits_{i=1}^{n} i

这就是求和式的加法规则(减法同理,减法就是特殊的加法)

如果要求值,则分别应用等比数列前n项和公式、等差数列前n项和公式

\sum\limits_{i=1}^{n} (2^{i}+i)=(\frac{a_{1}(1-q^{n})}{1-q})+(\frac{n(a_{1}+a_{n})}{2})

代入得求和式的值为

\sum\limits_{i=1}^{n} (2^{i}+i)=(2^{n+1}-2)+\frac{n(n+1)}{2}


求和式的加法规则(减法同理):

\sum\limits_{i=1}^{n} (a_{i}+b_{i})=\sum\limits_{i=1}^{n} a_{i}+\sum\limits_{i=1}^{n} b_{i} 


如果不相信减法同理,也可以推理一遍

【例7】求和式 \sum\limits_{i=1}^{n} (2^{i}-i)

\sum\limits_{i=1}^{n} (2^{i}-i)=(2^{1}-1)+(2^{2}-2)+(2^{3}-3)+\cdots + (2^{n}-n)\\[1.5ex] = (2^{1}+2^{2}+2^{3}+\cdots + 2^{n})+(-1-2-3-\cdots -n)\\[1.5ex] = (2^{1}+2^{2}+2^{3}+\cdots + 2^{n})-(1+2+3+\cdots +n)\\[1.5ex] =\sum\limits_{i=1}^{n} 2^{i}-\sum\limits_{i=1}^{n} i\\[1.5ex] =(\frac{a_{1}(1-q^{n})}{1-q})-(\frac{n(a_{1}+a_{n})}{2})\\[1.5ex] =(2^{n+1}-2)-\frac{n(n+1)}{2}

  

  

五、求和多项式的分解

有了求和式的线性规则(数乘规则、加法规则),我们就有了分解求和多项式的依据

【例8】求和多项式  \sum\limits_{i=1}^{n} ( \frac{​{i}^{2}+i+1}{2} )

首先使用数乘规则,将常数 \frac{1}{2} 提出

\sum\limits_{i=1}^{n} ( \frac{​{i}^{2}+i+1}{2} )=\frac{1}{2}\sum\limits_{i=1}^{n} ( {i}^{2}+i+1 )

使用加法规则,将左边多项式先拆开

\frac{1}{2}\sum\limits_{i=1}^{n} ( {i}^{2}+i+1 )=\frac{1}{2}(\sum\limits_{i=1}^{n} i^{2}+\sum\limits_{i=1}^{n}(i+1))

再使用加法规则,将右边多项式再拆开

\frac{1}{2}(\sum\limits_{i=1}^{n} i^{2}+\sum\limits_{i=1}^{n}(i+1))=\frac{1}{2}(\sum\limits_{i=1}^{n} i^{2}+\sum\limits_{i=1}^{n}i+\sum\limits_{i=1}^{n}1)

改变形式,将 \frac{1}{2} 重新变回分母

\frac{1}{2}(\sum\limits_{i=1}^{n} i^{2}+\sum\limits_{i=1}^{n}i+\sum\limits_{i=1}^{n}1)=\frac{\sum\limits_{i=1}^{n} i^{2}+\sum\limits_{i=1}^{n}i+\sum\limits_{i=1}^{n}1}{2}

原式与结果对比

\sum\limits_{i=1}^{n} ( \frac{​{i}^{2}+i+1}{2} )=\frac{\sum\limits_{i=1}^{n} i^{2}+\sum\limits_{i=1}^{n}i+\sum\limits_{i=1}^{n}1}{2}

可以发现,其实就是对其中每一项分别应用求和运算

  

  

六、求和式的分段规则

【例9】再以等差数列\{n\}为例:1,2,3,……,n

通项公式为 a_{n}=n,首项为1,公差为1

假设数列中间有一个值m:1,2,3,…,m,(m+1),…,n

那么可以将数列求和分为两段:1—m 和 (m+1)—n

对前n项和进行展开

S_{n}=\sum\limits_{i=1}^{n}i=1+\cdots+m+(m+1)+\cdots+n

将等式右边分为两部分

\sum\limits_{i=1}^{n}i=(1+\cdots+m)+[(m+1)+\cdots+n]

再将等式右边转为求和式形式

\sum\limits_{i=1}^{n}i=\sum\limits_{i=1}^{m}i+\sum\limits_{i=m+1}^{n}i


求和式的分段规则

\sum\limits_{i=1}^{n}a_{i}=\sum\limits_{i=1}^{m}a_{i}+\sum\limits_{i=m+1}^{n}a_{i}(其中 1\leqslant m< m+1\leqslant n


如果将分段规则进行移项,可得下面两式,相当于逆用分段规则

\sum\limits_{i=1}^{m}a_{i}=\sum\limits_{i=1}^{n}a_{i}-\sum\limits_{i=m+1}^{n}a_{i}

\sum\limits_{i=m+1}^{n}a_{i}=\sum\limits_{i=1}^{n}a_{i}-\sum\limits_{i=1}^{m}a_{i}

而且分段规则也可以多次使用,举个简单例子

【例10】多项式 \sum\limits_{i=1}^{4}i

\sum\limits_{i=1}^{4}i\\[1.5ex] =\sum\limits_{i=1}^{2}i+\sum\limits_{i=3}^{4}i\\[1.5ex] =(\sum\limits_{i=1}^{1}i+\sum\limits_{i=2}^{2}i)+(\sum\limits_{i=3}^{3}i+\sum\limits_{i=4}^{4}i)\\[1.5ex] =(1+2)+(3+4)\\[1.5ex] =1+2+3+4\\[1.5ex] =10

或者直接代入已知求和式  \sum\limits_{i=1}^{n}i=\frac{n(n+1)}{2} 

\sum\limits_{i=1}^{4}i=\frac{4(4+1)}{2}=2\times 5=10

两种计算方式结果相同

  

  

七、求和式的上下限变换规则

【例11】有求和式1:\sum\limits_{i=1}^{100} 1 和 求和式2:\sum\limits_{i=0}^{99} 1

求和式1展开得

\sum\limits_{i=1}^{100} 1=\overbrace{1+\cdots + 1}^{100} =100

求和式2展开得

\sum\limits_{i=0}^{99} 1=\overbrace{1+\cdots + 1}^{100} =100

可见两式的值是相等的

你可能会疑惑,为什么求和式2也是100个1相加

如果反应不过来,可以将0—99同时+1

相当于在数轴上将0—99整体向右移1个单位,得到1—100,这肯定是100个

所以 \sum\limits_{i=0}^{99} 1=\sum\limits_{i=0+1}^{99+1} 1=\sum\limits_{i=1}^{100} 1=100

这就是常量求和式的上下限变换规则

  

对于变量来说,情况就不一样了

【例12】有求和式3:\sum\limits_{i=1}^{100} (i-1) 和 求和式4:\sum\limits_{i=0}^{99} i

求和式3展开得

\sum\limits_{i=1}^{100} (i-1)=(1-1)+\cdots + (100-1) =0+\cdots + 99=\frac{100(0+99)}{2}=4950

求和式4展开得

\sum\limits_{i=0}^{99} i=0+\cdots + 99=\frac{100(0+99)}{2}=4950

可见两式的值是相等的

但是如果仿照上面,将求和式4的下标0—99同时+1

相当于在数轴上将0—99整体向右移1个单位,得到1—100

但是,此时得到的是 \sum\limits_{i=1}^{100} i,将其展开得

\sum\limits_{i=1}^{100} i=1+\cdots + 100=\frac{100(1+100)}{2}=5050

可以发现上下限变换后,少了常数项0,多了常数项100

如果通项公式不随之改变,那么结果会发生变化

  

所以当求和上下限增加时,通项下标要相应减少

当求和上下限减少时,通项下标要相应增加

这样才能保证展开的多项式不变

这就是变量求和式的上下限变换规则

 \sum\limits_{i=0}^{99} i=\sum\limits_{i=0+1}^{99+1} (i-1)=\sum\limits_{i=1}^{100} (i-1)=4950

这里比较特殊,因为通项公式 a_{i}=i,所以 a_{i-1}=i-1

  

【例13】求和式 \sum\limits_{i=2}^{101} 2i

将其展开得

\sum\limits_{i=2}^{101} 2i=2\times 2+\cdots +2\times 101=2\times(2+\cdots+101)=10300

用上下限变换规则得

\sum\limits_{i=2}^{101} 2i=\sum\limits_{i=2-1}^{101-1} 2(i+1)=\sum\limits_{i=1}^{100} 2(i+1)

这里求和上下限减少(-1),通项下标要相应增加(+1)

因为通项公式 a_{i}=2i,所以 a_{i+1}=2(i+1)

解法一:先用上下限变换规则,再展开计算

\sum\limits_{i=2}^{101} 2i\\[1.5ex] =\sum\limits_{i=2-1}^{101-1} 2(i+1)\\[1.5ex] =\sum\limits_{i=1}^{100} 2(i+1) \\[1.5ex] =2\times(1+1)+\cdots+2\times (100+1)\\[1.5ex] =2\times 2+\cdots +2\times 101\\[1.5ex] =2\times(2+\cdots+101)\\[1.5ex] =2\times(\frac{100(2+101)}{2})\\[1.5ex] =2\times(50\times 103)\\[1.5ex] =100\times 103\\[1.5ex] =10300

解法二:用数乘规则、分段规则(逆用)计算

\sum\limits_{i=2}^{101} 2i\\[1.5ex] =2\sum\limits_{i=2}^{101} i\\[1.5ex] =2(\sum\limits_{i=1}^{101} i-\sum\limits_{i=1}^{1} i)\\[1.5ex] =2(\frac{101(1+101)}{2}-1)\\[1.5ex] =2(5151-1)\\[1.5ex] =2\times 5150\\[1.5ex] =10300

解释一下,其中逆用分段规则进行分解

\sum\limits_{i=m+1}^{n}a_{i}=\sum\limits_{i=1}^{n}a_{i}-\sum\limits_{i=1}^{m}a_{i}

分解过程为

\sum\limits_{i=2}^{101}=\sum\limits_{i=1}^{101} i-\sum\limits_{i=1}^{1} i

解法三:用数乘规则,上下限变换规则,加法规则计算

\sum\limits_{i=2}^{101} 2i\\[1.5ex] =2\sum\limits_{i=2}^{101} i\\[1.5ex] =2\sum\limits_{i=2-1}^{101-1} (i+1)\\[1.5ex] =2\sum\limits_{i=1}^{100} (i+1)\\[1.5ex] =2(\sum\limits_{i=1}^{100} i+\sum\limits_{i=1}^{100} 1)\\[1.5ex] =2(\frac{100(1+100)}{2}+100)\\[1.5ex] =2(50\times 101+100)\\[1.5ex] =2(5050+100)\\[1.5ex] =2\times 5150\\[1.5ex] =10300

  


求和式的上下限变换规则

\sum\limits_{i=1}^{n} a_{i}=\sum\limits_{i=1+k}^{n+k} a_{i-k}


对于上下限变换规则的理解

【例14】有求和式 \sum\limits_{i=1}^{n} a_{i},展开有n项

 \sum\limits_{i=1}^{n} a_{i}=a_{1}+\cdots + a_{n}

对于这个求和式,变换原则就是无论 i 怎么变,都要让展开的多项式始终从 a_{1} 加到 a_{n}

比如k=2时,求和上下限变换(+2),通项下标也对应变换(-2)

\sum\limits_{i=1}^{n} a_{i}=\sum\limits_{i=1+2}^{n+2} a_{i-2}=\sum\limits_{i=3}^{n+2} a_{i-2}=a_{3-2}+\cdots + a_{n+2-2}=a_{1}+\cdots + a_{n}

这样变换后展开的多项式与原式相同

另外,求和上下限的初始值不一定是1和n,这里只是一种简单表示

  

  

八、多重求和式计算

【例15】双重求和式 \sum\limits_{i=1}^{n} \sum\limits_{j=1}^{i} 1

可以类比复合函数,对右边加括号

\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{i} 1=\sum\limits_{i=1}^{n} (\sum\limits_{j=1}^{i} 1)

先算括号内的 (\sum\limits_{j=1}^{i}1)

\sum\limits_{j=1}^{i}1 =\overbrace{1+\cdots +1}^{i} = i

上式变为

\sum\limits_{i=1}^{n} (\sum\limits_{j=1}^{i} 1)=\sum\limits_{i=1}^{n} i

将其展开,即为等差数列求和

\sum\limits_{i=1}^{n} i=1+2+\cdots +n=\frac{n(n+1)}{2}

    

【例16】求和式 \sum\limits_{i=1}^{n} i^{2}

在解决三重求和式之前,需要先推导出求和式 \sum\limits_{i=1}^{n} i^{2}的值

这里需要用到立方和公式、立方差公式、十字相乘法

①立方和公式:(a+b)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}

特别地,当b=1时:(a+1)^{3}=a^{3}+3a^{2}+3a+1

则 (i+1)^{3}=i^{3}+3i^{2}+3i+1

  

②立方差公式:a^{3}-b^{3}=(a-b)(a^{2}+ab+b^{2})

特别地,当b=1时:a^{3}-1^{3}=(a-1)(a^{2}+a+1)

则 (n+1)^{3}-1^{3}=(n+1-1)[(n+1)^{2}+(n+1)+1]

  

③多项式 2n^{2}+3n+1 可用十字相乘法进行因式分解

2n^{2}+3n+1=(n+1)(2n+1)

\begin{matrix} n & \quad \quad \quad 1\\[1.5ex] 2n & \quad \quad \quad 1 \end{matrix}

通过展开  \sum\limits_{i=1}^{n} (i+1)^{3} 进行计算,最终得到 \sum\limits_{i=1}^{n} i^{2}的值

\sum\limits_{i=1}^{n} (i+1)^{3}=\sum\limits_{i=1}^{n} (i^{3}+3i^{2}+3i+1)\\[1.5ex] \sum\limits_{i=1}^{n} (i+1)^{3}=\sum\limits_{i=1}^{n}i^{3}+\sum\limits_{i=1}^{n}3i^{2}+\sum\limits_{i=1}^{n}3i+\sum\limits_{i=1}^{n}1\\[1.5ex] \sum\limits_{i=1}^{n} (i+1)^{3}=\sum\limits_{i=1}^{n}i^{3}+3\sum\limits_{i=1}^{n}i^{2}+3\sum\limits_{i=1}^{n}i+\sum\limits_{i=1}^{n}1\\[1.5ex] \sum\limits_{i=1}^{n}(i+1)^{3}-\sum\limits_{i=1}^{n}i^{3}=3\sum\limits_{i=1}^{n}i^{2}+3\sum\limits_{i=1}^{n}i+\sum\limits_{i=1}^{n}1\\[1.5ex] \sum\limits_{i=1}^{n}[(i+1)^{3}-i^{3}]=3\sum\limits_{i=1}^{n}i^{2}+3\sum\limits_{i=1}^{n}i+\sum\limits_{i=1}^{n}1\\[1.5ex] \begin{Bmatrix} &2^{3}-1^{3}\quad \\ &3^{3}-2^{3}\quad \\ &4^{3}-3^{3}\quad \\ &\cdots\quad \\ &n^3-(n-1)^{3}\quad \\ &(n+1)^3-n^{3}\quad \end{Bmatrix}=3\sum\limits_{i=1}^{n}i^{2}+3\sum\limits_{i=1}^{n}i+\sum\limits_{i=1}^{n}1\\[1.5ex] (n+1)^{3}-1^{3}=3\sum\limits_{i=1}^{n}i^{2}+3\sum\limits_{i=1}^{n}i+\sum\limits_{i=1}^{n}1\\[1.5ex] (n+1-1)[(n+1)^{2}+(n+1)+1]=3\sum\limits_{i=1}^{n}i^{2}+3\times \frac{n(n+1)}{2}+n\\[1.5ex] n[(n^{2}+2n+1)+(n+1)+1]=3\sum\limits_{i=1}^{n}i^{2}+n[\frac{3(n+1)}{2}+1]\\[1.5ex] n(n^{2}+3n+3)=3\sum\limits_{i=1}^{n}i^{2}+n(\frac{3n+5}{2})\\[1.5ex] 3\sum\limits_{i=1}^{n}i^{2}=n[n^{2}+3n+3-(\frac{3n+5}{2})]\\[1.5ex] 3\sum\limits_{i=1}^{n}i^{2}=n(\frac{2n^{2}+6n+6-3n-5}{2})\\[1.5ex] 3\sum\limits_{i=1}^{n}i^{2}=n(\frac{2n^{2}+3n+1}{2})\\[1.5ex] 3\sum\limits_{i=1}^{n}i^{2}=n(\frac{(n+1)(2n+1)}{2})\\[1.5ex] 3\sum\limits_{i=1}^{n}i^{2}=\frac{n(n+1)(2n+1)}{2}\\[1.5ex] \sum\limits_{i=1}^{n}i^{2}=\frac{1}{3}\times \frac{n(n+1)(2n+1)}{2}\\[1.5ex] \sum\limits_{i=1}^{n}i^{2}=\frac{n(n+1)(2n+1)}{6}\\[1.5ex]

【例17】三重求和式 \sum\limits_{i=1}^{n} \sum\limits_{j=1}^{i} \sum\limits_{k=1}^{i} 1

\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{i} \sum\limits_{k=1}^{j} 1 \\[1.5ex] =\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{i} (\sum\limits_{k=1}^{j} 1) \\[1.5ex] =\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{i} (\overbrace{1+\cdots +1}^{j}) \\[1.5ex] =\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{i} j \\[1.5ex] =\sum\limits_{i=1}^{n} (\sum\limits_{j=1}^{i} j) \\[1.5ex] =\sum\limits_{i=1}^{n} (1+\cdots +i) \\[1.5ex] =\sum\limits_{i=1}^{n} (\frac{i(i+1)}{2}) \\[1.5ex] =\sum\limits_{i=1}^{n} (\frac{i^{2}+i}{2}) \\[1.5ex] = \frac{\sum\limits_{i=1}^{n}i^{2}+\sum\limits_{i=1}^{n}i}{2} \\[1.5ex] = \frac{\frac{n(n+1)(2n+1)}{6}+\frac{n(n+1)}{2}}{2} \\[1.5ex] = \frac{\frac{n(n+1)(2n+1)}{6}+\frac{3n(n+1)}{6}}{2} \\[1.5ex] = \frac{\frac{n(n+1)(2n+1+3)}{6}}{2} \\[1.5ex] = \frac{n(n+1)(2n+4)}{2\times 6} \\[1.5ex] = \frac{n(n+1)2(n+2)}{2\times 6} \\[1.5ex] = \frac{n(n+1)(n+2)}{6}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值