交换和号∑∑的推导

参考资料:《算两次》单遵,中国科学技术大学出版社,p73

 

交换和号-利用矩阵推导

有一个m行n列的矩阵(数表):

第i行的和记为ri:

第j列的和记为cj:

易知,矩阵中的所有元素的和 等于 所有行和ri求和 等于 所有列和cj求和:

上式也可写为:

即二重和的和号(求和次序)可以交换。

但要注意,但求和项数变为无穷或者(一个或两个)和号变为积分号时,往往要添加一个条件,相应的交换和号的结论才能成立。比如,著名的关于二重积分的富比尼定理,这也是“算两次”被冠以富比尼原理的缘由。

 

例子1-利用了上三角矩阵

注意“哑标”k,i的变化范围,交换和号时,一定要正确地确定求和的范围。

这个例子用到的上三角矩阵如下:

 

例子2-稍微复杂一点的例子

这个例子也是用到了三角矩阵。

傅里叶变换是一种将一个函数表示为一系列正弦余弦函数的方法,它在信处理、图像处理等领域有广泛的应用。下面是傅里叶变换的公式推导: 假设我们有一个函数f(t),它是一个连续时间域的函数。我们希望将其转换为频域表示,即找到一组复数系数F(ω),其中ω是频率。 首先,我们定义傅里叶变换公式如下: F(ω) = ∫[−∞,∞] f(t) * e^(-jωt) dt 其中,e^(-jωt) 是欧拉公式中的复指数函数,j是虚数单位。 接下来,我们将f(t)展开为其傅里叶级数表示: f(t) = ∑[−∞,∞] F(ω) * e^(jωt) dω 这个公式表示了函数f(t)可以由一系列复指数函数的线性组合来表示。 然后,我们将傅里叶变换公式代入傅里叶级数表示中: f(t) = ∑[−∞,∞] (∫[−∞,∞] f(t') * e^(-jωt') dt') * e^(jωt) dω 接下来,我们交换积分的顺序,并将积分求和合并: f(t) = ∫[−∞,∞] (∑[−∞,∞] f(t') * e^(-jωt') * e^(jωt) dω) dt' 根据欧拉公式,我们可以将复指数函数e^(-jωt') * e^(jωt)简化为cos(ω(t-t')) + j*sin(ω(t-t'))。 继续化简,我们得到: f(t) = ∫[−∞,∞] (∑[−∞,∞] f(t') * (cos(ω(t-t')) + j*sin(ω(t-t'))) dω dt' 根据三角函数的性质,我们可以将上式中的cos项sin项分别进行积分: f(t) = ∫[−∞,∞] (∑[−∞,∞] f(t') * cos(ω(t-t'))) dω dt' + j * ∫[−∞,∞] (∑[−∞,∞] f(t') * sin(ω(t-t'))) dω dt' 最后,我们定义傅里叶变换的实部虚部分别为: Re[F(ω)] = ∫[−∞,∞] f(t) * cos(ωt) dt Im[F(ω)] = ∫[−∞,∞] f(t) * sin(ωt) dt 将上述结果代入,我们得到傅里叶变换的公式推导: F(ω) = Re[F(ω)] + j * Im[F(ω)] 这就是傅里叶变换的公式推导过程。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值