求和符号的概念
求和符号是高等数学中频繁使用的符号,旨在简洁地表示对一系列数值的所有项进行累加。
例如:
$$a_0+a_1+a_2+a_3=\sum_{i=0}^{i=3}a_i$$
在此表达式中,\(i\) 被定义为求和变量,其从0变化到3,涵盖了所有需要累加的项。
求和符号的引入极大地简化了众多表达式的书写方式,但与此同时,当表达式中嵌套了求和符号时,相关的计算可能会变得较为复杂。
为了帮助大家更有效地理解和运用求和符号,以下将详细介绍求和符号的运算法则。
求和符号的运算法则
1. 求和符号的交换
在涉及双重求和(即求和符号的嵌套)时,如果两个求和符号紧密相关(即它们之间没有依赖于求和变量的其他运算或条件),那么这两个求和符号的顺序是可以交换的。
具体地,对于以下表达式:
$$ \sum_{i=0}^{n} \sum_{j=0}^{m} a_i b_j $$
和
$$ \sum_{j=0}^{m} \sum_{i=0}^{n} a_i b_j $$
它们是等价的。
原因:这主要归功于加法的交换律和结合律。在双重求和中,每一项 \(a_ib_j\) 都会被加到总和中,不论 \(i\) 和 \(j\) 的求和顺序如何。
注意:虽然求和符号的顺序可以交换,但前提是两个求和符号之间没有依赖于求和变量的其他运算或条件。如果存在这样的运算或条件,那么交换顺序可能会导致结果的不同。
2. 求和符号的提取与合并
当表达式中的某一部分与求和符号内的求和变量无关时,该部分可以自由地提取到求和符号之外,或者合并到求和符号内部(如果这样做有助于简化表达式)。
具体地,对于以下表达式:
$$ \sum_{l=0}^{L-1} a_l x_k $$
由于 \(x_k\) 与求和变量 \(l\) 无关,因此可以将其提取到求和符号之外:
$$ x_k \sum_{l=0}^{L-1} a_l $$
证明如下:
展开求和符号内的部分,我们得到:
$$ x_k\sum_{l=0}^{L-1}a_lx_k = a_0x_k+a_1x_k+...+a_{L-1}x_k=(a_0+a_1+a_{l-1})x_k=(\sum_{l=0}^{L-1}a_l) $$
原因:这主要归功于乘法分配律的逆用。由于 \(x_k\) 是一个常数(相对于求和变量 \(l\) 而言),因此它可以与求和结果相乘,而不改变求和的本质。
注意:在提取或合并与求和变量无关的部分时,必须确保该部分确实与求和变量无关,否则可能会导致错误的结果。
法则的扩展与应用
基于之前介绍的求和符号交换和提取法则,我们可以得出一个结论:
在计算包含多个求和符号嵌套的表达式时,只要确保带有求和变量的表达式位于其对应的求和符号之后,即可保持表达式的等价性
下面,让我们关注到含有两个求和符号的表达式
$$ \sum_{k=0}^{K-1}b_{ik}\sum_{l=0}^{L-1}a_{lk}x_l $$
对于这个表达式,其等价表达为
$$ \sum_{l=0}^{L-1}x_l\sum_{k=0}^{K-1}a_{lk}b_{ik} $$
注意到,\(x_l\) 依然位于带有求和变量 \(l\) 的求和符号之后,\(a_{lk}\) 位于带有变量 \(l\) 和 \(k\) 的求和符号之后, \(b_{ik}\) 也仍然位于带有变量 \(k\) 的求和符号之后
证明如下:
$$ \sum_{k=0}^{K-1}b_{ik}\sum_{l=0}^{L-1}a_{lk}x_l \\ = \sum_{k=0}^{K-1}\sum_{l=0}^{L-1}b_{ik}a_{lk}x_{l}\\=\sum_{l=0}^{L-1}\sum_{k=0}^{K-1}b_{ik}a_{lk}x_l\\=\sum_{l=0}^{L-1}x_l\sum_{k=0}^{K-1}b_{ik}a_{lk} $$
每一步都严格遵循了求和符号的基本法则,从而证明了两个表达式的等价性。