Faster rcnn alt opt 训练方法总结

一、前言

   本篇主要记录Faster rcnn 采用alt opt  训练方式做训练

二、制作自己的VOC2007格式的数据集

   这一部分可以参考 end to end 训练篇 https://mp.csdn.net/postedit/96730858 的章节二,这里不再重复

三、采用VGG_CNN_M_1024模型训练

1 、修改models/pascal_voc/VGG_CNN_M_1024/faster_rcnn_alt_opt/stage1_fast_rcnn_train.pt

a 将 data 层的 num_classes 改为 你的类别数+1

b 将cls_score 层的 num_output 改为 你的类别数+1

c 将 bbox_pred 层的 num_output 改为 ( 你的类别数+1)×4

2、修改models/pascal_voc/VGG_CNN_M_1024/faster_rcnn_alt_opt/stage1_rpn_train.pt

a 将 input-data 层的 num_classes 改为 你的类别数+1

3、修改models/pascal_voc/VGG_CNN_M_1024/faster_rcnn_alt_opt/stage2_fast_rcnn_train.pt,同样修改:

a 将 data 层的 num_classes 改为 你的类别数+1

b 将cls_score 层的 num_output 改为 你的类别数+1

c 将 bbox_pred 层的 num_output 改为 ( 你的类别数+1)×4

4、修改models/pascal_voc/VGG_CNN_M_1024/faster_rcnn_alt_opt/stage2_rpn_train.pt

a 将 input-data 层的 num_classes 改为 你的类别数+1

5、修改models/pascal_voc/VGG_CNN_M_1024/faster_rcnn_alt_opt/faster_rcnn_test.pt

a 将cls_score 层的 num_output 改为 你的类别数+1

b 将 bbox_pred 层的 num_output 改为 ( 你的类别数+1)×4

6、将 lib/datasets/pascal_voc.py 当中的 classes 改为你的类别,这里是 receipt

四、清除缓存以及下载预训练模型

1、训练前清空缓存文件夹:

 data/cache/ 

 data/VOCdevkit2007/annotations_cache/

删除 output 文件夹,该文件夹将生成训练得的权值文件

2、为加快训练,可使用由imagenet数据集预训练得到的模型

下载地址: 

链接: https://pan.baidu.com/s/1kUOD6hNE1DkBD0X07Wmf_g 提取码: iuyp 

使用其中的 VGG_CNN_M_1024.v2.caffemodel

五、学习率以及跌代次数修改

在py-faster-rcnn/models/pascal_voc/VGG_CNN_M_1024/faster_rcnn_alt_opt中的solve文件设置,迭代次数可在py-faster-rcnn\tools的train_faster_rcnn_alt_opt.py中修改:

max_iters = [80000, 40000, 80000, 40000]

分别为4个阶段(rpn第1阶段,fast rcnn第1阶段,rpn第2阶段,fast rcnn第2阶段)的迭代次数。可改成你希望的迭代次数。
如果改了这些数值,最好把py-faster-rcnn/models/pascal_voc/VGG_CNN_M_1024/faster_rcnn_alt_opt里对应的solver文件(有4个)也修改,stepsize小于上面修改的数值。

六、开始训练

进入py-faster-rcnn,执行:

./experiments/scripts/faster_rcnn_alt_opt.sh 0 VGG_CNN_M_1024 pascal_voc

七、demo

将训练得到的 output/faster_rcnn_alt_opt/voc_2007_trainval/VGG_CNN_M_1024_faster_rcnn_final.caffemodel  拷贝至 data/faster_rcnn_models 

修改 tools/demo.py:

在 py-faster-rcnn  下执行:

python demo.py --net vgg_m --cpu

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值