一、标量转换理论
设三相标量为
x
a
,
x
b
,
x
c
x_a,x_b,x_c
xa,xb,xc,且满足
x
a
+
x
b
+
x
c
=
0
x_a+x_b+x_c = 0
xa+xb+xc=0,则有变换:
X
o
u
t
=
x
a
+
a
x
b
+
a
2
x
c
,
其中
a
=
e
j
2
3
π
,
a
2
=
e
−
j
2
3
π
X_{out}=x_a+ax_b+a^2x_c,\\ 其中a=e^{j\frac{2}{3}\pi},a^2=e^{-j\frac{2}{3}\pi}
Xout=xa+axb+a2xc,其中a=ej32π,a2=e−j32π
结合欧拉公式与上式联合可求得:
[
R
e
X
o
u
t
I
m
X
o
u
t
0
]
=
[
1
−
1
2
−
1
2
0
3
2
−
3
2
1
1
1
]
[
x
a
x
b
x
c
]
\begin{bmatrix} ReX_{out}\\ImX_{out}\\0 \end{bmatrix} =\begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2}\\0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2}\\1&1&1 \end{bmatrix} \begin{bmatrix} x_a\\x_b\\x_c \end{bmatrix}
ReXoutImXout0
=
101−21231−21−231
xaxbxc
已知
X
o
u
t
X_{out}
Xout可以求得唯一标量解
x
a
,
x
b
,
x
c
x_a,x_b,x_c
xa,xb,xc,即三个标量
x
a
,
x
b
,
x
c
x_a,x_b,x_c
xa,xb,xc可以用复数矢量
X
o
u
t
X_{out}
Xout来表示。
二、三相标量的空间矢量变换
设三相对称正弦相电压的瞬时值:
{
u
a
=
U
m
cos
ω
t
u
b
=
U
m
cos
(
w
t
−
2
3
ω
t
)
u
c
=
U
m
cos
(
w
t
+
2
3
ω
t
)
\left\{\begin{matrix} u_a = & U_m\cos{\omega t} \\ u_b = & U_m\cos{(wt-\frac{2}{3}\omega t)} \\ u_c = & U_m\cos{(wt+\frac{2}{3}\omega t)} \end{matrix}\right.
⎩
⎨
⎧ua=ub=uc=UmcosωtUmcos(wt−32ωt)Umcos(wt+32ωt)
则其空间矢量(由上述转换理论而来):
U
o
u
t
=
u
a
+
a
u
b
+
a
2
u
c
=
3
2
U
m
e
j
(
ω
t
−
π
2
)
U_{out}=u_a+au_b+a^2u_c=\frac{3}{2}U_me^{j(\omega t-\frac{\pi}{2})}
Uout=ua+aub+a2uc=23Umej(ωt−2π)
电压空间矢量的运动轨迹:
上图是矢量 U o u t U_{out} Uout顶点处的运动轨迹,该轨迹是以角速度 ω \omega ω逆时针旋转得到一个圆。
三、电压空间矢量图
三相电源逆变器的原理图:
上下管为互斥状态,则
S
a
b
c
S_{abc}
Sabc的组合共有8个控制状态(
S
a
b
c
=
000
,
001
,
010
,
011
,
100
,
101
,
110
,
111
S_{abc}=000,001,010,011,100,101,110,111
Sabc=000,001,010,011,100,101,110,111),其按位为1则表示上管导通,为则表示下管导通。
根据状态和abc三相的矢量合成原理(两个向量合成),其8个状态可以表示为:
U
o
u
t
=
u
a
+
a
u
b
+
a
2
u
c
=
2
3
U
d
c
(
S
a
+
S
b
e
j
2
3
π
+
S
c
e
−
j
2
3
π
)
U_{out}=u_a+au_b+a^2u_c= \frac{2}{3}U_{dc}(S_a+S_be^{j\frac{2}{3}\pi}+S_ce^{-j\frac{2}{3}\pi})
Uout=ua+aub+a2uc=32Udc(Sa+Sbej32π+Sce−j32π)
2/3系数的由来:
四、复平面分割
可以将
U
6
U_6
U6视为由a和b(110)的合成,
U
2
U_2
U2视为b的独立作用合成(010)等;
在复平面可以直接用e的指数角度来进行判断。
主要学习书籍:《现代永磁同步电机控制原理及MATLAB仿真》
参考书籍:《车用驱动电机原理与控制基础》