In the last article, we introduced the current dilemmas and challenges faced by Advanced Driver Assistance Systems (ADAS) and proposed a solution of ARRK. In the following, we will tell you how ARRK realizes that operation with concrete examples.
上期文章中我们介绍了高级驾驶辅助系统(ADAS)当前所面临的困境与挑战,并提出了ARRK的解决方案。下面我们将以具体实例为大家讲述ARRK是如何实现该操作的。
Example Sharing
案例分享
Example ACC(Adaptive Cruise Control ): Analyzing the data sets with regard to trajectory planning ACC(自适应巡航系统)案例:分析轨迹规划相关的数据集
The ADAS function ACC was selected as a study example. It automatically controls the acceleration and breaking of a vehicle, always maintaining sufficient distance to other road users and obstacles. To do this, the system calculates the so-called time-to-collision (TTC) for each detected object. If it drops below a defined threshold value, the vehicle reacts accordingly with deceleration. Thereby applies: The greater the speed difference between the vehicle itself and an object in front of it, the shorter the TTC and the earlier the ACC must react.
ADAS中的ACC功能被选为一个研究案例。它能自动控制车辆的加速和制动,始终与其他道路使用者和障碍物保持足够的距离。为了做到这一点,该系统为每个检测到的物体计算所谓的碰撞时间(TTC)。如果它低于一个定义的阈值,车辆就会做出相应的减速反应。适用情况为车辆本身和前面的物体之间的速度差越大,TTC越短,ACC必须越早做出反应。
Due to this correlation, on motorways, for example, the system needs to reliably detect objects at a significantly greater distance, whereas in urban environments, potential obstacles may be located at a much wider close range. But are the ADAS of the different manufacturers even capable of doing this?
由于这种关联性,例如在高速公路上,系统需要可靠地检测到距离远得多的物体,而在城市环境中,潜在的障碍物可能位于范围更宽、但距离更近的位置。但是