目录
前言
📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。
🚀对毕设有任何疑问都可以问学长哦!
大家好,这里是海浪学长计算机毕设专题,本次分享的课题是
🎯基于深度学习的光伏电池片缺陷识别系统
项目背景
随着全球能源结构的转型和清洁能源的大力推广,光伏产业日益成为绿色能源的重要支柱。然而,光伏电池片在生产过程中可能产生各种缺陷,这些缺陷不仅影响电池片的性能,还可能导致整个光伏系统的效率降低。因此,光伏电池片缺陷的自动识别和分类成为光伏产业亟待解决的问题。基于深度学习的光伏电池片缺陷识别系统旨在通过计算机视觉技术,实现对电池片缺陷的快速、准确识别,提高光伏产业的生产效率和产品质量。这一课题的研究对于促进光伏产业的可持续发展具有重要意义。
数据集
市场上缺乏公开的光伏电池片缺陷数据集,因此我们决定自制数据集。首先,我们与光伏企业合作,获取了真实生产环境中的电池片图像。然后,我们聘请了专业的光伏技术人员对这些图像进行标注,标出缺陷的类型和位置。接着,我们对标注后的数据进行预处理,包括图像裁剪、归一化等操作,以提高模型训练的效率和准确性。
数据扩充是一种通过应用各种变换来增加训练数据集多样性和大小的技术,从而增强模型的泛化能力。在图像和文本处理任务中,数据扩充可以包括旋转、平移、缩放、翻转、裁剪、颜色扰动等变换,旨在让模型从多个角度学习数据的内在特征。然而,数据扩充需要保持语义一致性,并适度应用,以避免引入噪声或导致模型过拟合。
设计思路
基于卷积神经网络的模型,用于提取图像特征。在SD-CNN中,通过将基础网络(adapted AlexNet)的第一层卷积核替换为由可控证据滤波器生成的核,实现了功能集成和特征提取能力的保留。在前向传播过程中,SD-CNN的第一层卷积核由SEF(Selective Evidence Filter)的初始设置参数和基础网络第一卷积层的权重计算得到。通过将计算出的卷积核串联在最后一个维度上,得到完整的卷积核。这个卷积核被用作SD-CNN中的第一卷积层的权重,称为"SD-Conv"层。然后将SD-Conv层的输出与adapted AlexNet层连接起来。在反向传播过程中,使用梯度下降算法将梯度损失传递到每个卷积核的参数,并更新可训练参数,包括SEF的核权重。
SD-CNN是一种结合了SEF核和基础CNN核的模型,用于图像特征提取。它通过将SEF生成的核与基础CNN生成的核连接在一起,形成SD-Conv层,实现了功能的集成和特征层次性。SD-Conv层的维度为7×7×3×32,其中SEF核和基础CNN核各自负责不同的特征提取任务。通过反向传播,可以自动学习和更新SEF核的权重,从而改善手动参数设置的问题。SD-CNN模型的第一卷积层具有较低的几何特征和复杂的特征提取能力,通过这种方式提高了图像特征提取的性能。
残差网络利用跳层连接获取信息的非冗余部分,并对其进行线性激活,同时利用ReLU对冗余部分进行非线性激活,输出即为残差信息。这样做降低了有用信息丢失的概率,减少了ReLU层输出为零和梯度消失的概率,使得网络更容易优化向更深层次。通过改变模型对网络信息的利用方式,残差网络成功解决了退化问题。
在对ResNet网络进行修改的过程中,采取了一系列策略来实现像素级裂纹分割模型的优化。首先,通过去除全连接层和第五个池化层,构建了一个全卷积网络,以减少计算复杂度并避免对裂纹定位的干扰。其次,将网络按照每两个池化层之间的层进行划分,形成了五个阶段,便于后续处理。然后,在每个阶段的最后一个卷积层后添加了一个1×1的卷积层,用于降低通道数并整合特征信息。接下来,通过连接反卷积层(上采样层),对每个阶段的特征图进行上采样,以生成与输入图像相同尺寸的特征图,并保留了原始输入图像中裂纹结构的空间位置信息。在每个阶段的上采样层之后,连接权重交叉熵损失函数,对特征图进行逐像素分类,以获得侧边输出预测。随后,连接所有的上采样层,并使用1×1的卷积层融合每个阶段的特征图,最终连接交叉熵损失函数,得到特征融合的输出结果。综上所述,通过这些修改和增加的层,HRF模型能够有效地提取丰富的多级特征,从而实现准确且精细的像素级裂纹分割。
实验环境
在Ubuntu 16.04平台上,使用Keras框架进行实验。训练计算机采用Core i7系列CPU,配备32GB内存和两个GTX1080显卡。模型的学习率设置为0.0001,训练的最大步数为6000,批量大小为100。这样的配置为进行深度学习训练提供了强大的计算能力和内存容量,有助于加快训练速度和提高模型性能。
实验结果分析
在缺陷图像和非缺陷图像分类中,我们将缺陷图像作为正样本,非缺陷图像作为负样本。分类结果可以有四种情况:真阳性(正确预测为正样本)、假阳性(错误预测为正样本)、真阴性(正确预测为负样本)和假阴性(错误预测为负样本)。为了评估分类结果的准确性和完整性,我们使用精度、召回率和F测度这三个指标。精度衡量结果的准确性,召回率描述结果的完整性,而F测度综合考虑了精度和召回率,用于评估整体性能。通过这些指标,我们可以全面评估缺陷图像和非缺陷图像分类的性能。
相关代码示例:
import numpy as np
from sklearn.datasets import load_sample_image
from sklearn.model_selection import train_test_split
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense
# 加载光伏电池复杂表面 EL 图像数据
image = load_sample_image("path/to/your/image.jpg")
image = np.expand_dims(image, axis=0) # 添加维度以适应 CNN 输入要求
# 数据增强(可选)
# 进行图像翻转、旋转等数据增强操作
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(image, np.zeros(len(image)), test_size=0.2, random_state=42)
# 构建卷积神经网络模型
model = Sequential([
Conv2D(32, (3, 3), activation='relu', input_shape=(image.shape[1], image.shape[2], 1)), # 卷积层
MaxPooling2D((2, 2)), # 池化层
Conv2D(64, (3, 3), activation='relu'), # 更多卷积层和池化层
Dense(64, activation='relu'), # 全连接层
Dense(1, activation='sigmoid') # 输出层,用于二分类(缺陷或无缺陷)
])
# 编译模型
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
# 训练模型
model.fit(X_train, y_train, epochs=10, batch_size=16, validation_split=0.1)
# 在测试集上进行预测
y_pred = model.predict(X_test)
y_pred = np.where(y_pred > 0.5, 1, 0) # 将预测结果转换为二分类
# 计算准确率
accuracy = np.mean(y_pred == y_test)
print("Accuracy:", accuracy)
海浪学长项目示例: