RuntimeError: “mse_cpu“ not implemented for ‘Long‘

问题发现:

学习均方误差时发现自己写的例子运行错误,也不知道为什么别人写的代码要在数字后面加个.经过了解后才发现

原因:

Long类型的数据不支持log对数运算, 为什么Tensor是Long类型? 因为创建numpy 数组时没有指定dtype, 默认使用的是int64, 所以从numpy array转成torch.Tensor后, 数据类型变成了Long

下面是错误的代码

loss_fn = nn.MSELoss()

input = torch.tensor([1,2,3])
target = torch.tensor([2,3,4])
loss = loss_fn(input,target)
print(loss)

解决方法:

在创建的数组的时候指定的type类型为float型

方法一:
loss_fn = nn.MSELoss()

input = torch.tensor([1,2,3],dtype=float)
target = torch.tensor([2,3,4])
loss = loss_fn(input,target)
print(loss)
方法二:
loss_fn = nn.MSELoss()

input = torch.tensor([1.,2,3]
target = torch.tensor([2,3,4])
loss = loss_fn(input,target)
print(loss)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值