问题发现:
学习均方误差时发现自己写的例子运行错误,也不知道为什么别人写的代码要在数字后面加个.经过了解后才发现
原因:
Long类型的数据不支持log对数运算, 为什么Tensor是Long类型? 因为创建numpy 数组时没有指定dtype, 默认使用的是int64, 所以从numpy array转成torch.Tensor后, 数据类型变成了Long
下面是错误的代码
loss_fn = nn.MSELoss()
input = torch.tensor([1,2,3])
target = torch.tensor([2,3,4])
loss = loss_fn(input,target)
print(loss)
解决方法:
在创建的数组的时候指定的type类型为float型
方法一:
loss_fn = nn.MSELoss()
input = torch.tensor([1,2,3],dtype=float)
target = torch.tensor([2,3,4])
loss = loss_fn(input,target)
print(loss)
方法二:
loss_fn = nn.MSELoss()
input = torch.tensor([1.,2,3]
target = torch.tensor([2,3,4])
loss = loss_fn(input,target)
print(loss)