字节AI IDE:Trae+python安装配置Builder模式(Windows)

一、官方文档

官方文档:Trae 国内版文档站 - trae使用文档

二、下载安装Trae,安装python插件

下载地址:Trae - AI 原生 IDE

默认方式安装

选择“插件市场”,搜索python,安装python插件

注册登陆

新建一个工作文件夹,我这建了“trae”,用于测试

文件->打开文件夹,打开刚才新建的文件夹

三、配置 Builder模式文档

配置文档:Trae 国内版文档站 - trae使用文档

四、配置 PowerShell(Windows),

1. 安装 PowerShell 6 或更高版本。安装说明参考此文档

微软安装文档:Installing PowerShell on Windows - PowerShell | Microsoft Learn

2. 快捷键:win+r, 输入cmd进入命令行模式,运行一下命令安装

winget search Microsoft.PowerShell

winget install --id Microsoft.PowerShell --source winget

winget install --id Microsoft.PowerShell.Preview --source winget

效果如下:

3. 返回 Trae 并打开 终端 面板。 点击右上方区域的 + > 选择默认配置文件。

4. 选择PowerShell

5. 启动

6. 选择大模型,这里我测试DeepSeek

五、运行测试Biulder模式

目前Builder模式还是Alpha版

打开Chat窗口

测试Trae默认的项目,输入提示词“使用web技术栈生成一个To-Do list应用”

运行

六、测试自定义代码

新建test.py文件,录入代码并运行

测试builder生成python代码

七、小结

国内版3月3日发布,目前4天,通过基础测试基本通过,但对于大项目和原有项目的兼容情况还需进一步观察,是否能胜过vs code + 插件比较成熟的模式还未知,但我希望它能赢!

在处理CTR模型的连续特征时,AutoDis框架通过其独特的meta-embedding机制有效解决了参数爆炸问题。Meta-embedding允许连续特征的每个值具有一定的独立性,避免了为每个连续值分配一个独立embedding的问题,这直接减少了模型的参数量。 参考资源链接:[AutoDis框架:深度学习中的连续特征处理与优化](https://wenku.csdn.net/doc/7wzicf6siz?spm=1055.2569.3001.10343) 具体来说,Meta-embedding的设计基于一个假设,即不同的连续特征值虽然需要独立表示,但这些表示之间存在共享的结构。因此,AutoDis通过引入一个高级的特征表示层,即meta-embedding,来捕捉这种共享结构,从而在保持模型表达力的同时,避免了参数量的大幅增加。在这个机制下,每个特征域的连续特征值都有自己的表示,但这些表示在更高的抽象层次上进行合并和共享,以减少模型的总体复杂度。 此外,meta-embedding的引入也帮助优化了模型的训练过程。在端到端训练中,由于连续特征值的独立表示,使得特征之间的交互更加灵活,能够更好地学习特征之间的非线性关系。这不仅提高了模型的特征交互能力,还保持了模型训练的效率,避免了由于大规模参数导致的训练不稳定和过拟合问题。 因此,meta-embedding机制在提升CTR模型性能的同时,确保了模型具有一定的泛化能力和可伸缩性。这一点在实际应用中至关重要,尤其是在面对大规模和高维数据时,可以有效防止模型过拟合和计算资源的过度消耗。 对于希望深入了解CTR模型、embedding层优化以及AutoML技术的读者,我建议查阅《AutoDis框架:深度学习中的连续特征处理与优化》。该资料详尽介绍了AutoDis框架的核心概念,包括其独特的meta-embedding设计,以及如何在CTR模型中实现端到端训练,以优化连续特征的表示。阅读这份资料能够帮助你获得更全面的视角,更好地掌握在AutoML领域中处理复杂数据和模型的方法论。 参考资源链接:[AutoDis框架:深度学习中的连续特征处理与优化](https://wenku.csdn.net/doc/7wzicf6siz?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值