一个世纪以来人们被代数各种映射弄得头昏眼花,其实那些同构或同调不能解决实质问题,没度量就无法跟实数建立联系。[I]的§1.2只说度量能扩充而没证明,而我前天讲过Koblitz书中的证明错误。[L]p.38的定理2,对于Q的代数扩张E,说“对于嵌入映射σ:E→(Q(p)的代数闭包), ...”,并“suppose that the two embeddings are...”,其实根本无法证明这样的embedding嵌入映射 σ 的存在!Lang的书写的就是糊涂。无论如何我看局部类域论是全错了。当年Hilbert写了500多页代数,想跟Poincare竞争鲍耶奖却失败,现在看确实代数没价值。
国内很多书书后没有索引,例如[C],[I],但[MZ]书后有按英文字母的索引。
[B]W.H.Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry, Second Edition Academic Press, 1986.
[C]J.B.Conway(康威), 单复变函数,吕以辇/张南岳译,上海科技出版社,1985.
[CCL]S.S.Chern, W.H.Chen, K.S.Lam, Lectures on Differential Geometry, World Scientific, Singapore, 2000.
[I]K.Iwasawa(岩泽健吉),局部类域论,冯克勤译,科学出版社,1986.
[L]S.Lang, Algebraic Number Theory, GTM 110, Second Edition, Springer, 1986.
[M]J.R.Munkres, Topology, Second Edition, Prentice Hall, Inc. 2000, 537页。