数学中常见“踏破铁鞋无觅处”

最近基于我在数学理论中找错经验的简单 observation表明,紧流形分析和算术代数几何的错误类似,都是要进入局部但出不来,前者正如我说的“搞流形上的分析如同在楼顶跳舞”也即技术展示很少,加入“1的分解”中的未知函数后计算仅在一个固定的局部坐标系内有意义,后者不得不把p-adic数跟复数混合起来以至于理论上说不清,另外还有无法扩张定义度量的问题。
“大师”陈省身等人的书[CCL]中定义紧流形上的积分是却仿造自名不见经传的[B]。m维紧致流形必须用一个处处不等于零的m次外微分形式 ω 并借助“1的分解”定义才能定义积分,此微分形式 ω 在不同的局部坐标系内表达式不同,把整体积分定义为几个局部坐标系下的欧氏空间的积分,但这样一个外微分形式 ω 未必存在,存在一个处处不等于零的m次外微分形式 ω 的紧致流形被称为“可定向的”,[CCL]中轻率假设ω存在是不严格的,在我2003年秋天编的哈工大硕士研究生讲义《微分流形学》中给出证明:“可定向”等价于存在一组协同局部坐标系,也即要求局部坐标系变换矩阵的行列式大于零,而今天我演算发现,对于三维球(作为2维紧致流形),按[CCL]中局部坐标系的构造,竟然是不可定向的。这当然意味着用流形理论不能研究Poincare猜想。看看[M]就知道拓扑本身内涵多丰富,还得想法用拓扑解决本身解决问题。
一个世纪以来人们被代数各种映射弄得头昏眼花,其实那些同构或同调不能解决实质问题,没度量就无法跟实数建立联系。[I]的§1.2只说度量能扩充而没证明,而我前天讲过Koblitz书中的证明错误。[L]p.38的定理2,对于Q的代数扩张E,说“对于嵌入映射σ:E→(Q(p)的代数闭包), ...”,并“suppose that the two embeddings are...”,其实根本无法证明这样的embedding嵌入映射 σ 的存在!Lang的书写的就是糊涂。无论如何我看局部类域论是全错了。当年Hilbert写了500多页代数,想跟Poincare竞争鲍耶奖却失败,现在看确实代数没价值。
国内很多书书后没有索引,例如[C],[I],但[MZ]书后有按英文字母的索引。
[B]W.H.Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry, Second Edition Academic Press, 1986.
[C]J.B.Conway(康威), 单复变函数,吕以辇/张南岳译,上海科技出版社,1985.
[CCL]S.S.Chern, W.H.Chen, K.S.Lam, Lectures on Differential Geometry, World Scientific, Singapore, 2000.
[I]K.Iwasawa(岩泽健吉),局部类域论,冯克勤译,科学出版社,1986.
[L]S.Lang, Algebraic Number Theory, GTM 110, Second Edition, Springer, 1986.
[M]J.R.Munkres, Topology, Second Edition, Prentice Hall, Inc. 2000, 537页。
[MZ]苗长兴,张波,偏微分方程的调和分析解法,现代基础数学丛书,117,科学出版社,2008.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值