火锅店老板发iPhone11被喷凸显网友的不理智,任正非也用iPad

湖北一家火锅店因为业绩优异,决定给两名优秀员工手机奖励两台iPhone 11,该视频被发布上网,随后引发巨大争议,网友纷纷发表评论要求抵制该火锅店,甚至涌向点评网站给予其差评,迫于压力火锅店老板被迫将手机换为华为mate30 Pro,此一事件无疑凸显出中国的网友过激,行为有点不太理智。

对于消费者来说,使用什么手机完全是个人自由,火锅店老板选择给员工奖励什么手机完全应该由他们自主决定,网友这种行为有点道德要挟的味道,这其实是不利于国内的智能手机市场发展的。

随后有网友对此进行调查,如果老板奖励手机希望是iPhone还是国产手机,三个多小时的投票时间,显示大多数网友都希望老板奖励iPhone而不是国产手机,有网友表示即使喜欢国产手机也会希望老板发iPhone,毕竟将iPhone卖出后再买国产手机都可以剩下部分钱在手呢,干嘛不要iPhone,显示出大众网友与这些激进的网友还是有区别。

事实上华为公司创始人兼总裁任正非也劝说网友要理性爱国,“买华为手机不等于爱国,消费者完全可以根据自己的喜好而购买”,任正非本人也被拍到他使用的是iPad,并没强调华为员工就一点要用华为手机。

描述中国的经济如今已经达到较高的水平,人均GDP已超过一万美元,消费者对各种消费品的需求越来越丰富,他们在选购消费品的时候早已是优先考虑产品的品质,其次才考虑是否为国产品牌,例如在新能源汽车市场,美国的特斯拉汽车从2019年下半年以来就在中国市场持续热销,许多消费者抢购特斯拉汽车,特斯拉的model3也一度冲上中国新能源汽车市场第一名。

中国已是全球第一大制造国,中国品牌如今已走向国际市场,中国的手机在印度占据第一名,中国手机手机品牌已在印度智能手机市场合计占有超过七成的市场份额,这凸显出中国制造的强大实力。

在这样的情况下,我们更应该敞开心胸,对自己的品牌充满信心,让消费者自主决定该购买国产品牌还是外国品牌产品,如果这种情绪蔓延对于中国品牌走向世界是不利的,也不利于中国智能手机行业的良性的竞争。

-----------------------------

柏铭科技 BMtech007

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值