关于回文串的几种常见算法总结

一、判断字符串为回文串

回文串:字符串反转后和原字符串相同同,比如aba
判断代码如下,思路是从头尾开始依次比较,全部相同就代表是回文串
时间复杂度为O(n),空间复杂度O(1)

	//判断字符串i-j是否为回文串
    bool isPalindromic(string &s,int i,int j)
    {
        while(i < j)
        {
            if(s[i++] != s[j--])
            {
                return false;
            }
        }
        return true;
    }

二、查找字符串中有多少个回文子串

1、暴力枚举

直接遍历整个字符串
时间复杂度为O(n3),空间复杂度O(1)

int countSubstrings(string s) 
{
	int count = 0;
	int len = s.size();
	
	for(int i = 0;i < len;i++)
	{
		for(int j = i;j < len;j++)
		{
			if(isPalindromic(s,i,j) == true)
			{
				count++;
			}
		}
	}
	
	return count;
}

2、中心扩展法

回文串是对称的,所以在回文串头尾添加一个相同的字母,得到的新的字符串一定是回文串。
这样我们在遍历时从一个中心点开始向两边扩展,判断左右两边是否相等即可。这样就不用每次都从头开始遍历
时间复杂度为O(n2),空间复杂度O(1)

int countSubstrings(string s) 
{
	int len = s.size(),count = 0;
    if (len == 0)
    {
    	return 0;
    }

    for (int i = 0; i < len; i++) 
    {
        //回文串有奇数和偶数长度,中心点长度是1个和2个
        count += expandAroundCenter(s, i, i); //从一个字符扩展
        count += expandAroundCenter(s, i, i + 1); //从两个字符之间扩展
    }
    
    return count;
}

int expandAroundCenter(string &s, int left, int right) 
{
    int l = left, r = right,count = 0;
    int len = s.size();
    
    while (l >= 0 && r < len && s[l] == s[r]) 
    {
        l--;
        r++;
        count++;
    }
    
    return count;
}

代码优化,我们看上面代码,最后一次遍历,i+1是超出数组范围的,所以是没有遍历那一次的,
因此我们可以得出,遍历的中心点个数是 2 * len - 1;分别是 len 个单字符和 len - 1个双字符。
举个例子:aba:有 a、ab、b、ba、a五个中心点

int countSubstrings(string s) 
{
	int n = s.size(), count = 0;
    //遍历所以中心点
    for (int i = 0; i < 2 * n - 1; i++) 
    {
    	//单个中心点l 和 r重合
    	int l = i / 2, r = i / 2 + i % 2;
        while (l >= 0 && r < n && s[l] == s[r]) 
        {
            --l;
            ++r;
            ++count;
        }
    }
    
    return count;
}

3、动态规划

当确认首位字符相等时,我们只需要中间字符串是回文串,就可以确认当前字符串是回文串。
这样我们可以用一个二维数组去记录字串是否为回文串,就可以向填表一样递推出每个字符
串是否为回文串。
时间复杂度为O(n2),空间复杂度O(n2)

int countSubstrings(string s) 
{
	int count = 0;
	int len = s.length;
	
	bool **dp = new bool*[len];
	for (int i = 0;i < len;i++) 
	{
		dp[i] = new bool[len];
		for(int j = 0;j < len;j++)
		{
			dp[i][j] = false;
		}
	}
	
	for (int j = 0;j < len;j++) 
	{
		for (int i = 0;i <= j;i++) 
		{
			if (i == j) // 单个字符
			{ 
				dp[i][j] = true;
				count++;
			} 
			else if (j - i == 1 && s[i] == s[j]) // 两个字符 
			{ 
				dp[i][j] = true;
				count++;
			} 
			else if (j - i > 1 && s[i] == s[j] && dp[i + 1][j - 1]) // 多于两个字符
			{ 
				dp[i][j] = true;
				count++;
			}
		}
	}
	
	return count;
};

4、Manacher(马拉车)算法

马拉车算法很巧妙,利用了回文串对称的特性尽最大的努力去减少中心扩展的比较次数,
不会无脑的去比较而是把前面的状态记录下来加以利用。
因为马拉车算法的最大回文右端点r_max只会变大不会变小,所以遍历的次数不会超过过n
时间复杂度为O(n),空间复杂度O(n)

int countSubstrings(string s)
{
    int n = s.size();
    //字符串前后加@$是当作边界,就不用去判断边界了,边界符号与插入符号、字符串包含的符号都不能相同
    string s_new = "@#";
    for (const char &c: s) 
    {
        s_new += c;
        //插入符号,添加插入符号的作用是不用去管原字符串是奇数还是偶数,统一变成奇数的字符串
        s_new += '#';
    }
    n = s_new.size();
    s_new += '$';
	//记录状态数组,数组内容是以当前点为中心能够扩展回文串最大的半径
    auto f = vector <int> (n);
    //最大回文串的中心点坐标
    int id_max = 0;
    //最大回文串右端点
    int r_max = 0;
    //回文子串数量
    int count = 0;
    
    for (int i = 1; i < n;i++)
    {
        /*
        初始化 f[i],最关键的代码
        i <= r_max 代表当前点在最大回文串里面,在这个回文串里面i有个对称点j = 2*id_max-1,r_max的对称点l_max,
        根据回文串的对称性,[i,r_max]区间与[l_max,j]区间一定是相等的。
        在以j为中心的回文里面有[j+f[j],j]、[j,j-f[j]]这两个对称区间一定是相等的,
        在以j为中心的回文里面对称,[l_max,j]和[j,j-f[j]]的交集在[j+f[j],j]里面,然后在最大回文里面对称过去就是
        i左边有和这个交集相同的字符串,这样i就是由左右两边这样的交集组成的回文,半径就是交集的大小,
        min(r_max - i + 1, f[j])就是计算交集的大小。
        */
        f[i] = (i <= r_max ) ? min(r_max - i + 1, f[2 * id_max - i]) : 1;
        //中心拓展,加减到边界时因为边界字符与其他字符都不同,一定会退出循环,而不会越界
        while (s_new[i + f[i]] == s_new[i - f[i]])
        {
	        f[i]++;
        }
        //更新 id_max 和 r_max 
        if (i + f[i] - 1 > r_max ) 
        {
            id_max = i;
            r_max = i + f[i] - 1;
        }
        //去掉插入符号组成的回文串
        count += (f[i] / 2);
    }

    return count ;
}

三、回文子串最大长度

上面几种算法都遍历的所有子串,只需要在每次确认字串时记录当前子串长度,找出最大的子串即可。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值