SPWM和SVPWM基础

本文从各处文章转载而来,请读者们关注原作者。
参考链接:正弦脉冲宽度调制介绍
参考链接:从零开始做逆变器系列
参考链接:三次谐波注入的SPWM
参考链接:电压利用率
参考链接:指定谐波消除法PWM
参考链接:SVPWM算法原理及详解
参考链接:单相和三相SPWM的区别
参考链接:FOC和SVPWM的C语言代码实现
参考链接:两电平spwm与svpwm之间的联系
参考链接:电流跟踪控制PWM
参考链接:三电平spwm与svpwm之间的联系
参考链接:NPC三电平逆变器SVPWM调制基本原理
参考链接:T型三电平并网控制之一(发波及换流过程分析)
参考链接:I字型三电平环流场景的详解
参考链接:基于T型三电平逆变器拓扑的单级式PCS
两电平三相变流器(整流/逆变)空间矢量调制(SVPWM)的工作原理及仿真实现
三相pwm整流器-采用电压电流双闭环, SVPWM调制
SVPWM在整流器中的应用
彻底吃透SVPWM如此简单

正弦脉冲宽度调制介绍(SPWM)

调制过程中一般有三个信号:调制波、 载波、输出波,三者的关系为:调制波+载波=输出波;
以等腰三角形载波和参考正弦波的相交关系,可以产生SPWM调制波。
逆变器内部原理图
SPWM的控制逻辑
使用上下错位的双层三角波,若使用上层三角波产生的脉冲去控制上桥臂,则使用下层三角波产生的脉冲波控制下桥臂,即可获得必要的死区时间,若调节两三角波上下错位的程度,则可以自由调整死区时间
死区时间示意图

SPWM分类

SPWM还分为三种不同的方式,单极性SPWM,双极性SPWM和单极性倍频SPWM
H桥

  1. 双极性的SPWM通俗的来说就G1和G2的PWM互补,且G1和G3互补,即G1和G4的驱动信号相同,G2和G3的驱动信号相同且是和G1G4相反的,我们使用MCU控制的时候可以把G1和G4连在一起接到PWM上,G2和G3连在一起接到其互补通道上。
    此时负载R的电压变化是直接从+Udc变换到-Udc,变化幅度很大。而我们在布线的时候难免会有分布电容的存在,此时Δdu/Δdt就会有电流产生作用在管子上,容易导致管子损坏。
    在这里插入图片描述
    优点:
    1、代码简单
    2、控制逻辑清晰明了
    缺点:
    1、管子一直在载波频率下开关,开关损耗大,发热严重,寿命短
    2、效率低
    3、谐波含量高
  2. 调制波的正半周期:
    G3关断,G4导通,此时给G1和G2输入互补的SPWM,输出0~+Udc
    调制波的负半周期:
    G1关断,G2导通,此时给G3和G4输入互补的SPWM,输出-Udc~0
    因此在整个调制波的周期内总有一对管子是不做高频切换的,以调制波的频率切换的,所以开关损耗降低了,进而MOS的发热也会降低在调制波的正半周期输出是+Udc,在调制波的负半周期输出的是-Udc,H桥输出端的电压变化是从+Udc到0,再从0到-Udc,变化幅度相对于双极性来说缩小了一半。
    在这里插入图片描述
  3. 单极性倍频和双极性有点类似,载波是一样的,只不过还加入了一个相位相差180度的调制波形和载波相比,把输出的结果同步作用到H桥上
    在这里插入图片描述
    怎么理解倍频?倍频在什么地方?有两种方式理解:
    1、从调制波的波形来看,单极性的调制方式完成正负半轴的周期是2p,而单极性倍频是p,周期缩短一半,频率增加一倍。
    2、从H桥输出的波形来看,当载波和相位为0和180°的正弦波比较时,会分别产生上图示波形,两个波形分别作用到H桥的两个桥臂上时,H桥的输出的波形就是两个波形的差,即图1的波形减去图2的波形等于图3的波形,从输出的波形上来看,在同一个周期内,开关次数是桥臂PWM的2倍,因此倍频在这里,当桥臂输入10KHz的SPWM时,H桥就能输出20KHz的频率。再看下面这张图就更明了了。
    在这里插入图片描述
    优点:
    1、在相同的载波频率下能输出更高的频率,使得后级的LC电路中的电感可以更小,因此体积也会更小,成本更低。
    2、输出的高频谐波含量也会更少

电压利用率

  1. SPWM永磁同步电机示意图
    根据上图所示的连接方式,可以分析端电压

在这里插入图片描述
基于以上分析,可以得到三相端电压的表达式:三相端电压表达式
三相端电压波形图如下所示:三相端电压波形图
根据端电压与相电压的关系,可以得到下列公式:在这里插入图片描述
等式左右分别相加可以得到:在这里插入图片描述
同一时刻三相相电压相加的和为0,因此:
在这里插入图片描述
在这里插入图片描述
2. SVPWM
在这里插入图片描述
在这里插入图片描述

三次谐波注入的SPWM

电机的各种控制方式均是为了获得正弦波电压,并且在电源电压Ud一定的情况下,所获得的正弦波幅值越大越好。

根据傅里叶变换,正弦波可以由各种交流周期信号获得,而各种交流周期信号傅里叶变换后其幅值及谐波情况都有区别,我们对几种常见的交流周期信号进行傅里叶变换处理(假设各周期信号幅值为1、周期为2π):
矩形波
假设其正值持续时间=负值持续时间=π,其波形及基波如图
在这里插入图片描述
三角波
假设其斜率为正时间=斜率为负时间=π,其波形及基波如图44.2所示:
在这里插入图片描述
在这里插入图片描述
根据以上对比可知,矩形波的基波幅值最大,但其谐波较大;梯形波的基波幅值其次,谐波次数相对较低;三角波基波幅值较小;正弦波幅值较梯形波及矩形波低,但无高次谐波。

综合来看使用梯形波可兼顾基波幅值及谐波;为了更进一步减少谐波,可以使用正弦波拟合出类梯形波,这样既提高了基波幅值,又减小了谐波;
为什么使用三次谐波注入
依据:三次谐波与基波可拟合出类梯形波,且电机的三相对称绕组的连接方式可以将3的倍数次时间谐波互相抵消,因此注入三次谐波后提高了电压利用率、减小高次谐波,且对线电压及合成磁动势均无影响。
在这里插入图片描述
由相电压及线电压的上述公式可知,U/V/W处电压的三次谐波相等,电机线电压中三次谐波电压为0,即电流中不含三次时间谐波的成分。

对于三角形连接,以N’点为中性点,同理可计算电机中的线电压,其线电压中也不表现出三次谐波成分;

更一般的,电机的三相对称绕组的连接方式可以将3的倍数次时间谐波互相抵消;因此在电机中三次谐波对线电压及合成磁动势均无影响。

我们取基波与三次谐波进行合成,可得到类似于梯形波的波形,并令合成波的最大值为单位1,即在这里插入图片描述
三次谐波注入的SPWM:将调制波改为基波与三次谐波的合成波,即为三次谐波注入的SPWM;其基波幅值较普通的SPWM提高了15.5%左右。

这里提一下,三次谐波注入的SPWM接近于SVPWM的控制效果

指定谐波消除法

简单讲,就是给PWM信号进行傅里叶展开,然后将高次谐波系数调整为0,计算出对应的开关频率。
具体参考原作者的文章吧。

SVPWM

PCS主回路

看原作者的文章吧

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值