《Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network》阅读笔记

本文介绍了一种基于生成对抗网络(GAN)的单图像超分辨率方法SRGAN,通过结合对抗损失和感知损失,能恢复图像的纹理细节。SRGAN在提升图像视觉效果上优于基于MSE优化的传统方法,并通过MOS测试验证了其效果。
摘要由CSDN通过智能技术生成

本文提出了一种利用生成对抗网络(GAN)对低分辨率单一图像进行超分辨率(super-resolution)的网络结构,作为GAN的一种重要应用,很值得去学习研究。阅读原文点这里


Abstract

尽管我们已经利用更快更深的卷积神经网络(CNN)突破了单一图像超分辨率的速度和精度,但有一个中心问题仍没有完美解决:当对放大很多倍的图像进行超分辨率时,我们该如何更好的恢复图像的纹理细节?
以最优化思想为基础的超分辨率方法主要受到目标函数的驱使,最近的一些相关项目均以最小化平均方差重建误差为目标,这样得到的结果有很大的信噪比,但是往往图像会缺失高频细节并且视觉效果很差。
因此,作者提出了SRGAN,这是第一个对放大四倍自然图像做超分辨率的框架。为了实现这个框架,作者提出了由adversarial losscontent loss组成的perceputal loss functionadversarial loss由判别器生成,使我们生成的图像更加接近自然图像。content loss由图像的视觉相似性生成,而不是像素空间的相似性。并且本文的深度残差网络可以从深度降采样的图像恢复逼真的纹理。作者采用mean-opinion-score(MOS)测试作为图像效果的评判,最后的测试结果表明采用SRGAN获得的图像的MOS值比采用其他顶级的方法获得的图像的MOS值更加接近原始的高分辨图像。

Introduction

超分辨率(SR)指的是由低分辨(LR)图像生成高分辨(HR)图像的技术,SR受到计算机视觉领域的持续关注并且已经有了广泛的应用。
目前被大多人采用的以最优化目标函数为基础的监督SR算法存在缺失图像高频纹理细节的问题,使生成的图像很模糊。这种算法大多以均方误差(MSE)为目标函数进行优化,在减小均方误差的同时又可以增大信噪比(PSNR)。但是MSE和PSNR值的高低并不能很好的表示视觉效果的好坏。正如在下面图片表现出的,PSNR最高并不能反映SR效果最好。
图片 1
因此,作者提出以深度残差网络(ResNet)作为生成器的生成对抗网络,与以往不同的是,ResNet的优化目标不止MSE,还有VGG网络与判别器构成的perceptual loss.

Contribution

  • 建立了以PSNR和结构相似性(structural similarty,SSIM)为评判标准的SRResNet来对放大4倍的图像做超分辨率。
  • 提出的SRGAN以perceptual loss为优化目标,我们用VGG网络特征图谱的损失函数取代了以MSE为基础的content loss
  • 我们对生成的图片进行MOS测试。

Method

在训练SRGAN网络的过程中需要提供HR图片,作者首先对HR图片进行降采样得到LR图片,然后将LR图片输入,训练生成器,使之生成对应的HR图片。训练生成器的过程与训练前馈CNN一样,都是对网络参数 θG 进行优化,如下所示:
公式
需要注意的是在这里用的是perceptual loss—

  • 2
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值