x²≡a mod p(p是奇素数)的解法(配例题)

本文详细介绍了奇素数p(p=4m+3, 8m+5, 8m+1)下,同余方程x²≡a mod p的解法,包括欧拉判别法和Legendre符号的应用,通过实例展示了如何求解同余方程,并给出了解的数量和形式。" 108250260,7858900,LeetCode解题:高效合并区间算法,"['算法', '数据结构', 'C++']
摘要由CSDN通过智能技术生成

p = 4 m + 3 p=4m+3 p=4m+3的情况

  已知同余式有解的情况下,

  1. p ∣ a \left. p \right|a pa,则原同余式等价于
    x 2 ≡ a ≡ 0     m o d   p { {x}^{2}}\equiv a\equiv 0\text{ }\bmod p x2a0 modp
    有唯一解
    x ≡ 0     m o d   p x\equiv 0\text{ }\bmod p x0 modp
  2. p ∣ a p\cancel{|}a p a,由于 p = 4 m + 3 p=4m+3 p=4m+3是奇素数, a a a是模 p p p的平方剩余,由欧拉判别方法有
      a p − 1 2 = a 4 m + 3 − 1 2 = a 2 m + 1 ≡ 1     m o d   p ⇒ x 2 ≡ a = a × 1 ≡ a × a 2 m + 1 = ( a m + 1 ) 2     m o d   p \begin{aligned} & \text{ }{ {a}^{\frac{p-1}{2}}}={ {a}^{\frac{4m+3-1}{2}}}={ {a}^{2m+1}}\equiv 1\text{ }\bmod p \\ & \Rightarrow { {x}^{2}}\equiv a=a\times 1\equiv a\times { {a}^{2m+1}}={ {\left( { {a}^{m+1}} \right)}^{2}}\text{ }\bmod p \\ \end{aligned}  a2p1=a24m+31=a2m+11 modpx2a=a×1a×a2m+1=(am+1)2 modp
    显然地,
    x ≡ ± a m + 1     m o d   p x\equiv \pm { {a}^{m+1}}\text{ }\bmod p x±am+1 modp
    是同余式的两解。且由于 p p p是奇素数,同余式的解数 ≤ deg ⁡ ( x 2 − a ) = 2 \le \deg \left( { {x}^{2}}-a \right)=2 deg(x2a)=2,因此这两解也是所有的解。

例题

  1. 同余式 x 2 ≡ 2     m o d   7 { {x}^{2}}\equiv 2\text{ }\bmod 7 x22 mod7是否有解?如果有,不用穷举法求其解。
    ( 7 = 4 × 1 + 3 ) \left( 7=4\times 1+3 \right) (7=4×1+3)

       7 7 7是奇素数,因此可用Legendre符号来判断是否有解。
    且由于 7 ≡ − 1     m o d   8 7\equiv -1\text{ }\bmod 8 71 mod8,有 ( 2 7 ) = 1 \left( \frac{2}{7} \right)=1 (72)=1,因此原同余式有解。
    由欧拉判别方法,有
      2 7 − 1 2 = 2 3 ≡ 1     m o d   7 ⇒ x 2 ≡ 2 = 2 × 1 ≡ 2 × 2 3 = 2 4     m o d   7 \begin{aligned} & \text{ }{ {2}^{\frac{7-1}{2}}}={ {2}^{3}}\equiv 1\text{ }\bmod 7 \\ & \Rightarrow { {x}^{2}}\equiv 2=2\times 1\equiv 2\times { {2}^{3}}={ {2}^{4}}\text{ }\bmod 7 \\ \end{aligned}  2271=231 mod7x22=2×12×23=24 mod7
    显然
    x ≡ ± 2 2 = ± 4 ≡ ∓ 3     m o d   7 x\equiv \pm { {2}^{2}}=\pm 4\equiv \mp 3\text{ }\bmod 7 x±22=±43 mod7
    是同余式的两解。由于模数 7 7 7是奇素数,因此该同余式的解数 ≤ deg ⁡ ( x 2 − 2 ) = 2 \le \deg \left( { {x}^{2}}-2 \right)=2 deg(x22)=2。因此这两解也是所有的解。

  2. 同余式 x 2 ≡ 5     m o d   11 { {x}^{2}}\equiv 5\text{ }\bmod 11 x25 mod11是否有解?如果有,不用穷举法求其解。
    ( 11 = 4 × 2 + 3 ) \left( 11=4\times 2+3 \right) (11=4×2+3)

      由于 11 11 11是奇素数,因此可用Legendre符号判断是否有解。
    由于 5 ≡ 1     m o d   4 5\equiv 1\text{ }\bmod 4 51 mod4,因此由二次反转律有
    ( 5 11 ) = ( 11 5 ) = ( 1 5 ) = 1 \left( \frac{5}{11} \right)=\left( \frac{11}{5} \right)=\left( \frac{1}{5} \right)=1 (115)=(511)=(51)=1
    即同余式有解。
    由欧拉判别方法,得
    5 11 − 1 2 = 5 5 ≡ 1     m o d   11 ⇒ x 2 ≡ 5 = 5 × 1 ≡ 5 × 5 5 = 5 6     m o d   11 \begin{aligned} & { {5}^{\frac{11-1}{2}}}={ {5}^{5}}\equiv 1\text{ }\bmod 11 \\ & \Rightarrow { {x}^{2}}\equiv 5=5\times 1\equiv 5\times { {5}^{5}}={ {5}^{6}}\text{ }\bmod 11 \\ \end{aligned} 52111=551 mod11x25=5×15×55=56 mod11
    显然
    x ≡ ± 5 3 = ± 125 ≡ ± 4     m o d   11 x\equiv \pm { {5}^{3}}=\pm 125\equiv \pm 4\text{ }\bmod 11 x±53=±125±4 mod11
    是其两解。且由于 11 11 11是奇素数,同余式解数 ≤ deg ⁡ ( x 2 − 5 ) = 2 \le \deg \left( { {x}^{2}}-5 \right)=2 deg(x25)=2,因此这两解也是同余式所有的解。

p = 8 m + 5 p=8m+5 p=8m+5的情况

  已知同余式有解的情况下,

  1. p ∣ a \left. p \right|a pa,则原同余式等价于
    x 2 ≡ a ≡ 0     m o d   p { {x}^{2}}\equiv a\equiv 0\text{ }\bmod p x2a0 modp
    有唯一解
    x ≡ 0     m o d   p x\equiv 0\text{ }\bmod p x0 modp

  2. p ∣ a p\cancel{|}a p a,由于 p = 8 m + 5 p=8m+5 p=8m+5是奇素数, a a a是模 p p p的平方剩余,由欧拉判别方法有
    a p − 1 2 = a 8 m + 5 − 1 2 = a 4 m + 2 = ( a 2 m + 1 ) 2 ≡ 1     m o d   p { {a}^{\frac{p-1}{2}}}={ {a}^{\frac{8m+5-1}{2}}}={ {a}^{4m+2}}={ {\left( { {a}^{2m+1}} \right)}^{2}}\equiv 1\text{ }\bmod p a2p1=a28m+51=a4m+2=(a2m+1)21 modp
    因此有
    a 2 m + 1 ≡ 1     m o d   p  或  a 2 m + 1 ≡ − 1     m o d   p { {a}^{2m+1}}\equiv 1\text{ }\bmod p\text{ 或 }{ {a}^{2m+1}}\equiv -1\text{ }\bmod p a2m+11 modp  a2m+11 modp

    1. a 2 m + 1 ≡ 1     m o d   p { {a}^{2m+1}}\equiv 1\text{ }\bmod p a2m+11 modp时,有
      ( a m + 1 ) 2 ≡ a     m o d   p { {\left( { {a}^{m+1}} \right)}^{2}}\equiv a\text{ }\bmod p (am+1)2a modp
      此时原同余式等价于
      x 2 ≡ a ≡ ( a m + 1 ) 2     m o d   p { {x}^{2}}\equiv a\equiv { {\left( { {a}^{m+1}} \right)}^{2}}\text{ }\bmod p x2a(am+1)2 modp
      有且只有两个解
      x ≡ ± a m + 1     m o d   p x\equiv \pm { {a}^{m+1}}\text{ }\bmod p x±am+1 modp

    2. a 2 m + 1 ≡ − 1     m o d   p { {a}^{2m+1}}\equiv -1\text{ }\bmod p a2m+11 modp时,考虑到奇素数 p = 8 m + 5 ≡ − 3     m o d   8 p=8m+5\equiv -3\text{ }\bmod 8 p=8m+53 mod8 2 2 2是模 p p p的平方非剩余,有
      2 p − 1 2 = 2 8 m + 5 − 1 2 = 2 4 m + 2 ≡ − 1     m o d   p { {2}^{\frac{p-1}{2}}}={ {2}^{\frac{8m+5-1}{2}}}={ {2}^{4m+2}}\equiv -1\text{ }\bmod p 22p1=228m+51=24m+21 modp
      因此有
        a 2 m + 1 ( 2 2 m + 1 ) 2 ≡ ( − 1 ) × ( − 1 ) = 1     m o d   p ⇒ ( a m + 1 2 2 m + 1 ) 2 ≡ a     m o d   p \begin{aligned} & \text{ }{ {a}^{2m+1}}{ {\left( { {2}^{2m+1}} \right)}^{2}}\equiv \left( -1 \right)\times \left( -1 \right)=1\text{ }\bmod p \\ & \Rightarrow { {\left( { {a}^{m+1}}{ {2}^{2m+1}} \right)}^{2}}\equiv a\text{ }\bmod p \\ \end{aligned}  a2m+1(22m+1)2(1)×(1)=1 modp(am+122m+1)

  • 5
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值