洛谷 P2447 [SDOI2010]外星千足虫(高斯异或消元+bitset)

题目传送门

https://www.luogu.org/problemnew/show/P2447


思路

高斯异或消元就是在模2环境下的高斯消元。解异或方程组跟解一般方程组的区别在于只考虑答案的奇偶性。(假如系数拆成只有0或1)

就这题而言,直接高斯消元即可,我们确定当前行主元(为1)后,去消其他行时可以采取异或。当A[j][i]=1时,A[j][k]-=A[j][i]*A[i][k],如果A[i][k]=0,则减去一个偶数,奇偶性不变,相当于A[j][k]^=0,同理当A[i][k]=1时相当于A[j][k]^=1。于是我们直接拿第j行异或上第i行即可。

直接每位都去异或会超时,用bitset加速一下。

对于题目中多解情况,只需判断R(A)是否等于n就行了。选够n条“有效”方程后,剩余的一定皆为0行。我们每次将有用的方程换上去即可。对于要求的K,我们在选主元所在行时尽量选行数小的,并取其中最大的行数输出。(一开始犯傻忘了取max)


代码

#include <bits/stdc++.h>
#define maxn 1010
#define maxm 2020

using namespace std;

int n, m, R_A, Last;
bitset <maxn> A[maxm];
char s[maxn];

void Gauss(){
    for(int i = 1; i <= m; i++){
        int x = i;
        for(int j = i+1; j <= m; j++)
            if(A[j][i] > A[x][i])  x = j;

        swap(A[i], A[x]);

        if(A[i][i])  R_A ++, Last = max(Last, x);

        for(int j = 1; j <= m; j++)
            if(i != j && A[j][i])  A[j] ^= A[i];
    }
}

int main(){

    scanf("%d%d", &n, &m);

    int x;
    for(int i = 1; i <= m; i++){
        scanf("%s", s);
        for(int j = 1; j <= n; j++)  A[i][j] = s[j-1] - '0'; 
        scanf("%d", &x);  A[i][n+1] = x;
    }

    Gauss();

    if(R_A == n){
        printf("%d\n", Last);
        for(int i = 1; i <= n; i++){
            if(A[i][n+1])  puts("?y7M#");
            else  puts("Earth");
        }
    }
    else  puts("Cannot Determine");

    return 0;
}

多想就这么睡下去,一直睡到天荒地老。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值