题目传送门
https://www.luogu.org/problemnew/show/P2447
思路
高斯异或消元就是在模2环境下的高斯消元。解异或方程组跟解一般方程组的区别在于只考虑答案的奇偶性。(假如系数拆成只有0或1)
就这题而言,直接高斯消元即可,我们确定当前行主元(为1)后,去消其他行时可以采取异或。当A[j][i]=1时,A[j][k]-=A[j][i]*A[i][k],如果A[i][k]=0,则减去一个偶数,奇偶性不变,相当于A[j][k]^=0,同理当A[i][k]=1时相当于A[j][k]^=1。于是我们直接拿第j行异或上第i行即可。
直接每位都去异或会超时,用bitset加速一下。
对于题目中多解情况,只需判断R(A)是否等于n就行了。选够n条“有效”方程后,剩余的一定皆为0行。我们每次将有用的方程换上去即可。对于要求的K,我们在选主元所在行时尽量选行数小的,并取其中最大的行数输出。(一开始犯傻忘了取max)
代码
#include <bits/stdc++.h>
#define maxn 1010
#define maxm 2020
using namespace std;
int n, m, R_A, Last;
bitset <maxn> A[maxm];
char s[maxn];
void Gauss(){
for(int i = 1; i <= m; i++){
int x = i;
for(int j = i+1; j <= m; j++)
if(A[j][i] > A[x][i]) x = j;
swap(A[i], A[x]);
if(A[i][i]) R_A ++, Last = max(Last, x);
for(int j = 1; j <= m; j++)
if(i != j && A[j][i]) A[j] ^= A[i];
}
}
int main(){
scanf("%d%d", &n, &m);
int x;
for(int i = 1; i <= m; i++){
scanf("%s", s);
for(int j = 1; j <= n; j++) A[i][j] = s[j-1] - '0';
scanf("%d", &x); A[i][n+1] = x;
}
Gauss();
if(R_A == n){
printf("%d\n", Last);
for(int i = 1; i <= n; i++){
if(A[i][n+1]) puts("?y7M#");
else puts("Earth");
}
}
else puts("Cannot Determine");
return 0;
}
多想就这么睡下去,一直睡到天荒地老。