LangChain定义&组成

文章讨论了一种新的LLM开发框架,通过封装常见AI操作为API,提高开发效率。Prompts和Chains用于管理对话流程,数据增强生成支持不同模型如GPT。文章还提及了如何利用agents结合其他工具和记忆功能,包括短期和长期对话上下文处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定义

LLM开发框架,它把AI程序开发中的常见操作,封装成API了,进而将AI程序的开发标准化,提升构建大语言模型相关软件的效率

组成

Prompts

提示词,我们给大模型的输入文本

Chains

链式操作:当我们多次对话时,后面的对话内容依赖于前面的对话结果,就可以用chain可以把它们串起来

例如:

①请你告诉我,中国最大的湖在哪个地方

②我想要去这个地方旅游,请根据这个地方的地理位置和气候,给出一份旅游建议

第②个操作的结果是依赖于第①个的,就可以用chain把他们串起来

其实有点类似于设计模式里的责任链模式

最简单的,一般问答直接使用qa_chain就可以了

data augmented generation(数据增强生成)

也就是AI生成器(用的哪个大模型)

它可以是open-ai的gpt模型,也可以是自己部署的chatGLM,或者llama模型等

agents

可以把其他工具和lang chain结合起来使用,比如结合python脚本跑python代码,或者结合搜索引擎来搜索,结合计算器来做计算

Memory

记忆/知识

短期记忆

也就是多轮对话的上下文

长期记忆/知识

两种方式实现:①微调②询问大模型时,把知识也写到prompts里面

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值