在浩瀚的计算机语言中,总有一些算法——虽然码量很少,但却能完美又巧妙地解决那些复杂的问题。接下来,我们要介绍的“约瑟夫环”问题就是一个很好的例子。
这个问题来源于犹太人约瑟夫经历过的故事,在罗马人占领乔塔帕特后,约瑟夫和他的朋友与39 个犹太人躲到一个洞中,39个犹太人决定宁愿死也不要被敌人抓到,于是决定了一个自杀方式,41个人排成一个圆圈,由第1个人开始报数,每报数到第3人时,该人就必须自杀,然后再由下一个人重新报数,直到所有人都自杀身亡为止。
然而约瑟夫和他的朋友并不想遵从这个规则,于是,他们想出新的思路:从一个人开始,越过k-2个人(因为第一个人已经被越过),并杀掉第k个人。接着,再越过k-1个人,并杀掉第k个人。这个过程沿着圆圈一直进行,直到最终只剩下一个人留下,这个人就可以继续活着。
问题是,给定了和,一开始要站在什么地方才能避免被处决?如果你是约瑟夫,你会站在什么样的位置呢?数数与大家一起,从运用以下两个方面来解决这个问题。
模拟法
循环单链表实现:
约瑟夫环问题的基本形式为:n个人围成一圈,从第一个开始报数,每报到m者将被杀掉,直至只剩一个人。
如:N=6,M=5
1 2 3 4 5 6
1 2 3 4 6
1 2 3 6
1 2 3
1 3
1
由此可以很容易想到使用循环单链表来实现。创建指针p,当指针移动m-1个位置后,就该删除下一个节点,由此类推,直至链表中只含一个节点。
n,m=map(int,input().split())
li=[] #记录编号
for i in range(1,n+1):
li.append(i)
s=0 #报数
while len(li)>1:
i=0 #列表的下表
while i<len(li): #判断列表是否已经遍历完成
s+=1
if s==m:
li.remove(li[i]) #从列表里删除,此时下表不增加
s=0 #报数归零
else:
i+=1 #重点,只有数字没删除的情况下下标才+1
print(li[0])

827

被折叠的 条评论
为什么被折叠?



