NOI2009 [变化序列]

问题简述

对于0,1,…,N-1的N个整数,给定一个距离序列D0,D1,…,DN-1,定义一个变换序列T0,T1,…,TN-1使得每个i,Ti的环上距离等于Di。一个合法的变换序列应是0,1,…,N-1的一个排列,任务是要求出字典序最小的那个变换序列。

      抽象成图论模型,建立一个二分图,X集合每个顶点代表0,1,…,N-1的N个整数,Y集合每个顶点为对应的N个整数。X集合的第i个顶点向其环上距离为Di的Y集合中的两个顶点连一条边。样例建图后如图1所示。

      显然一个变换序列,就是二分图的一个完美匹配,关键在于如何保证字典序最小。求字典序最小解得一般方法就是尝试枚举,并转为化判定性问题。

于是方法就是,以此确定X集合每个顶点的对应点,首先尝试让其对应序号较小的顶点,然后判断剩下的图是否存在一个完美匹配(用匈牙利算法求最大匹配,判断最大匹配数是否等于X集合剩余顶点数)。如果存在,那么当前顶点对应点就是序号较小的顶点,否则就是另一个顶点。最初应先判断是否存在完美匹配,如果不存在,那么该情况无解。

      假设还存在一个比当前方法求得的解T字典序更小的解V,那么对于0<=i<=N-1一定有Vi<=Ti,并且存在一个j使得Vj<Tj。因为Vj<Tj,所以X集合顶点j一定是对应的序号较大的顶点Tj,而Vj则是序号较小的顶点。由于如果j对应了Vj,剩余的顶点不存在完美匹配,所以V不是合法解,因而不存在一个比当前方法求得的解T字典序更小的解V,T是字典序最小的解。

复杂度分析

该图的边数是O(N)的,所以匈牙利算法的时间复杂度为O(N2)。由于对于每个点都要进行一次匈牙利算法,所以该算法的时间复杂度为O(N3)。在实际的测试数据中能拿到70分。

参考程序
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>

using namespace std;

const int MAXN=20003,MAXM=MAXN*2;

struct edge
{
	edge *next;
	int t;
}*V[MAXN],ES[MAXM];

FILE *fi,*fo;
int N,EC;
int mat[MAXN],S[MAXN][2],T[MAXN];
bool vis[MAXN],lock[MAXN];

inline void addedge(int a,int b)
{
	ES[++EC].next = V[a];
	V[a] = ES+EC;
	V[a]->t = b;
}

void init()
{
	int i,t1,t2,d;
	fi = fopen("transform.in","r");
	fo = fopen("transform.out","w");
	fscanf(fi,"%d",&N);
	EC = 0;
	for (i=1;i<=N;i++)
	{
		fscanf(fi,"%d",&d);
		t1 = i + d;
		if (t1>N) t1-=N;
		t2 = i - d;
		if (t2<1) t2+=N;
		if (t1 < t2)
			S[i][0] = t1,S[i][1] = t2;
		else
			S[i][0] = t2,S[i][1] = t1;
		addedge(i,S[i][1]+N);
		addedge(i,S[i][0]+N);
	}
}

bool aug(int i)
{
	for (edge *e=V[i];e;e=e->next)
	{
		int j = e->t;
		if (!vis[j] && !lock[j])
		{
			vis[j] = true;
			if (!mat[j] || aug(mat[j]))
			{
				mat[j] = i;
				return true;
			}
		}
	}
	return false;
}

bool hungary()
{
	memset(mat,0,sizeof(mat));
	for (int i=1;i<=N;i++)
	{
		if (lock[i]) continue;
		memset(vis,0,sizeof(vis));
		if (!aug(i))
			return false;
	}
	return true;
}

bool solve()
{
	int i,j;
	if (!hungary())
		return false;
	for (i=1;i<=N;i++)
	{
		lock[i] = true;
		for (j=0;j<=1;j++)
		{
			if (!lock[S[i][j]+N])
			{
				lock[S[i][j]+N] = true;
				if (hungary())
				{
					T[i] = S[i][j];
					break;
				}
				lock[S[i][j]+N] = false;
			}
		}
	}
	return true;
}

void print(bool win)
{
	if (win)
	{
		int i;
		for (i=1;i<N;i++)
			fprintf(fo,"%d ",T[i] - 1);
		fprintf(fo,"%d\n",T[i] - 1);
	}
	else
		fprintf(fo,"No Answer\n");
	fclose(fi);
	fclose(fo);
}

int main()
{
	init();
	print(solve());
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值