挑战程序设计(算法和数据结构)—数论

质数检验

题目18.1链接Prime Numbers
两种方法:

  • 检验质数法
  • 埃拉托色尼筛选法(把范围内的质数全选出来)
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;

const int MAX = 10000005;
bool isPrime(int t)//检验质数法
{
    if(t==2) return 1;
    if(t<2 || t%2==0) return 0;
    for(int i=3; i*i<=t; i+=2)
    {
        if(t%i==0)
            return 0;
    }
    return 1;
}

int isprime[MAX];
void eratos(int n)//埃拉托色尼筛选法
{
    memset(isprime, -1, sizeof(isprime));
    isprime[0] = isprime[1] = 0;
    for(int i=2; i<=n; i++)
    {
        if(isprime[i]==0) continue;
        int j=i*i;//技巧,i*k(k<i)一定已经被标记过了
        while(j<=n)
        {
            isprime[j] = 0;
            j += i;
        }
    }
}

int main()
{
    int n, t, ans = 0;
    scanf("%d", &n);
    eratos(MAX-1);
    for(int i=0; i<n; i++)
    {
        scanf("%d", &t);
        //if(isPrime(t)) ans++;
        if(isprime[t]) ans++;
    }
    printf("%d\n", ans);

    return 0;
}
最大公约数

题目18.2链接Greatest Common Divisor
欧几里得算法

#include <iostream>
#include <algorithm>
using namespace std;

int gcd(int x, int y)
{
    int r;
    if(x<y) swap(x, y);
    while(y>0)
    {
        r = x%y;
        x = y;
        y = r;
    }
    return x;
}
int main()
{
    int x, y;
    cin >> x >> y;
    int d = gcd(x, y);
    cout << d << endl;
    return 0;
}
幂乘

题目18.3链接Power

#include <iostream>
using namespace std;

typedef long long LL;
const int MAX = 1000000007;

LL Power(LL m, LL n)
{
    LL res = 1;
    while(n>0)
    {
        if(n&1) res = res*m%MAX;//n为奇数时将上一次计算的值乘起来
        m = m*m%MAX;
        n >>= 1;//n除以2
    }
    return res;
}
int main()
{
    LL m, n;
    cin >> m >> n;
    LL res = Power(m, n);
    cout << res << endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>