摸鱼(一)(状压dp)

/*
摸鱼
 
题意:
有一条路上有n个坑,每个坑里面有v[i]个鱼(1<=v[i]<=100),peter从这条路走过,每个坑只能摸一次,
peter可以选择摸或者不摸,每摸一个坑都可以得到一个摸鱼快感,摸鱼快感的大小等于
坑中鱼的数量,但是如果该坑的两侧都没有被摸的话,就可以得到这个坑的摸鱼快感的2倍, 
现在给你坑的数量和每个坑中鱼的数量,让你求最大的摸鱼快感
(坑的数量小于等于1e6); 
时间 1s; 

*/

思路:

(1),我的状压dp这样表示

   用dp[i][j]表示从前面位置到当前位置的能最大值(不记录后一个为的值,但是标记,后一个位置是否选择)(在考虑状态的情况下),我的每个i位置表示,其前面,后面以及本身位置的选择,

    (000) (这三个位置都没有选择)dp[i][j] = vmax[i-2];

    (001) (只选择前一个位置) dp[i][j] = (dp[i-1][2]) > (dp[i-1][3]) ? (dp[i-1][2]) : (dp[i-1][3]);

    (010) (只选择当前位置)dp[i][j] = (dp[i-1][4] + 2 * v[i]) > (dp[i-1][4] + 2 * v[i]) ? (dp[i-1][5] + 2 * v[i]) : (dp[i-1][5] + 2 * v[i]);

    (011) (不选择后一个位置)(dp[i-1][6] + v[i]) > (dp[i-1][7] + v[i]) ? (dp[i-1][6] + v[i]) : (dp[i-1][7] + v[i]);

     (100)(只选择后一个位置)dp[i][j] = 0;

     (101)(不选择当前位置)dp[i][j] = (dp[i-1][2]) > (dp[i-1][3]) ? (dp[i-1][2]) : (dp[i-1][3]);

     (110)(不选择前一个位置)(dp[i-1][4]) > (dp[i-1][5]) ? (dp[i-1][4]) : (dp[i-1][5]);

     (111)(都选择)dp[i][j] = (dp[i-1][6]) > (dp[i-1][7]) ? (dp[i-1][6]) : (dp[i-1][7]);

最后考虑一下边界就行了。

由于不是oj上的题,自己就打了一个代码,望大家检查错误。

代码:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

typedef long long ll;
typedef unsigned long long llu;

const int maxn = 1e6+5;
const ll inf = 0x3f3f3f3f3f3f;

ll v[maxn],dp[maxn][8],vmax[maxn];

int main()
{
	int t;
	scanf("%d",&t);
	for (int i = 0;i<t;i++){
		scanf ("%lld",&v[i]);
	}
	v[t] = 0;
	ll maxx = -inf;
	for (int i = 0;i<8;i++){
		if(i == 0) dp[1][i] = 0;
		if(i == 1) dp[1][i] = 2*v[0];
		if(i == 2) dp[1][i] = 2*v[1];
		if(i == 3) dp[1][i] = v[0] + v[1];
		if(i == 4) dp[1][i] = 0;
		if(i == 5) dp[1][i] = 2 * v[0];
		if(i == 6) dp[1][i] = v[1];
		if(i == 7) dp[1][i] = v[0] + v[1];
		maxx = max(maxx,dp[1][i]);
		vmax[1] = maxx;
	}
	vmax[0] = v[0]*v[0];
	for (int i = 2;i<=t;i++){
		maxx = -inf;
		for (int j = 0;j<8;j++){
			if(j == 0) dp[i][j] = vmax[i-2];
			if(j == 1) dp[i][j] = (dp[i-1][2]) > (dp[i-1][3]) ? (dp[i-1][2]) : (dp[i-1][3]);
			if(j == 2) dp[i][j] = (dp[i-1][4] + 2 * v[i]) > (dp[i-1][4] + 2 * v[i]) ? (dp[i-1][5] + 2 * v[i]) : (dp[i-1][5] + 2 * v[i]);
			if(j == 3) dp[i][j] = (dp[i-1][6] + v[i]) > (dp[i-1][7] + v[i]) ? (dp[i-1][6] + v[i]) : (dp[i-1][7] + v[i]);
			if(j == 4) dp[i][j] = 0;
			if(j == 5) dp[i][j] = (dp[i-1][2]) > (dp[i-1][3]) ? (dp[i-1][2]) : (dp[i-1][3]);
			if(j == 6) dp[i][j] = (dp[i-1][4]) > (dp[i-1][5]) ? (dp[i-1][4]) : (dp[i-1][5]);
			if(j == 7) dp[i][j] = (dp[i-1][6]) > (dp[i-1][7]) ? (dp[i-1][6]) : (dp[i-1][7]);
			maxx = maxx > dp[i][j] ? maxx : dp[i][j];
		}
		vmax[i] = maxx;
	}
	printf("%lld\n",vmax[t]);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值