牛客网暑期ACM多校训练营(2018.第一场)J 题

链接:https://www.nowcoder.com/acm/contest/139/J
来源:牛客网
 

题目描述

Given a sequence of integers a1, a2, ..., an and q pairs of integers (l1, r1), (l2, r2), ..., (lq, rq), find count(l1, r1), count(l2, r2), ..., count(lq, rq) where count(i, j) is the number of different integers among a1, a2, ..., ai, aj, aj + 1, ..., an.

输入描述:

The input consists of several test cases and is terminated by end-of-file.
The first line of each test cases contains two integers n and q.
The second line contains n integers a1, a2, ..., an.
The i-th of the following q lines contains two integers li and ri.

输出描述:

For each test case, print q integers which denote the result.

 

示例1

输入

复制

3 2
1 2 1
1 2
1 3
4 1
1 2 3 4
1 3

输出

复制

2
1
3

备注:

* 1 ≤ n, q ≤ 1e5
* 1 ≤ ai ≤ n
* 1 ≤ li, ri ≤ n
* The number of test cases does not exceed 10.

题意:

给出一个数列,长度为k,q次查询,每给出一个数对(lq, rq)都要查询(1,lq),(rq,k)中不同数字种类的数量

思路:

主席树,和莫队TLE了(不过听说过有人莫队卡过了);

先将数组变为原来的两倍 , 这样就变成了区间问题

先用一个前缀数组per , per [ i ] 记录前面出现的数字的种类 , 那么 cout ( lq , rq )  =  per [ lq + k ] - per [ rq ] +  (  lq 与 rq 中 共同出现的数字种类数);

可是   [ lq 与 rq 中 共同出现的数字种类数 ] 如何求呢?

可以考虑用树状数组维护求得

复杂度O ( n * lg ( n ) ) 

思路结束

-------------------------------------------------------------------------------AC code-------------------------------------------------------------------------

 

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>

using namespace std;

const int maxn = 2e5+5;

int bit[maxn],p[maxn],nxt[maxn];
int per[maxn],v[maxn],vis[maxn];
int n,q;

struct node{
    int l,r;
    int id,ans;
}ss[100000 + 5];

int cmp(node x,node y){
    return x.l < y.l;
}

int cmp1(node x,node y){
    return x.id < y.id;
}

void update(int pos,int val){
    while( pos < n ) {
        bit[pos] += val;
        pos += (pos & (-pos));
    }
}

int Query(int pos){
    int res = 0;
    while ( pos > 0 ) {
        res += bit[pos];
        pos -= (pos & (-pos));
    }
    return res;
}

int query(int l,int r){
    return Query(r) - Query(l - 1);
}

void init(){
    memset(vis,0,sizeof(vis));
    memset(p,-1,sizeof(p));
    memset(nxt,-1,sizeof(nxt));
    memset(bit,0,sizeof(bit));
}

int main(){
    while(cin>>n>>q)
    {
        init();
        for (int i = 1;i<=n;i++){
            scanf("%d",&v[i]);
            v[i+n] = v[i];
        }
        n = n*2; per[0] = 0;
        for (int i = 1;i<=n;i++){
            if( !vis[v[i]] ){
                per[i] = per[i-1] + 1;
                vis[v[i]] = 1;
            } else {
                per[i] = per[i-1];
            }
            if ( ~p[v[i]] ) {
                nxt[p[v[i]]] = i;
            }
            p[v[i]] = i;
        }
        for (int i = 0;i<q;i++){
            scanf("%d %d",&ss[i].l,&ss[i].r);
            ss[i].id = i;
            ss[i].l += (n/2);
            swap(ss[i].l,ss[i].r);
        }
        int r = 1;
        sort(ss,ss+q,cmp);
        ///for (int i = 1 ;i <= n ;i++)
        ///    printf("%d ",nxt[i]);
        ///printf("\n");
        ///for (int i = 1 ;i <= n ;i++)
        ///    printf("%d ",per[i]);
        ///printf("\n");
        for (int i = 0;i<q;i++){
            while ( r < ss[i].l ) {
                if ( ~nxt[r] ) {
                    update(nxt[r],1);
                }
                r++;
            }
            ss[i].ans = per[ss[i].r] - per[ss[i].l - 1] + query(ss[i].l,ss[i].r );
            ///printf("ss[i].l = %d ss[i].r = %d\n",ss[i].l,ss[i].r);
            ///printf("%d %d\n",Query(ss[i].l),Query(ss[i].r));
        }
        sort(ss,ss+q,cmp1);
        for (int i = 0;i<q;i++){
            printf("%d\n",ss[i].ans);
        }
    }
    return 0;
}

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值