扩欧应用

A. The Monster
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

A monster is chasing after Rick and Morty on another planet. They're so frightened that sometimes they scream. More accurately, Rick screams at times b, b + a, b + 2a, b + 3a, ... and Morty screams at times d, d + c, d + 2c, d + 3c, ....

The Monster will catch them if at any point they scream at the same time, so it wants to know when it will catch them (the first time they scream at the same time) or that they will never scream at the same time.

Input

The first line of input contains two integers a and b (1 ≤ a, b ≤ 100).

The second line contains two integers c and d (1 ≤ c, d ≤ 100).

Output

Print the first time Rick and Morty will scream at the same time, or  - 1 if they will never scream at the same time.

Examples
input
20 2
9 19
output
82
input
2 1
16 12
output
-1
Note

In the first sample testcase, Rick's 5th scream and Morty's 8th time are at time 82.

In the second sample testcase, all Rick's screams will be at odd times and Morty's will be at even times, so they will never scream at the same time.




题目大意:

有一个怪物在追赶  Rick 和 Morty    他们两个人很害怕 所以不停的尖叫    

Rick在  b, b + a, b + 2a, b + 3a, ...   时刻尖叫   

Morty在   d, d + c, d + 2c, d + 3c, .... 时刻尖叫

问两个人会不会在同一时刻尖叫


分析:

扩展欧几里得  略微分析便可得到方程

若想两人同时尖叫   需满足   b + a*x = d + c*y   --->    a*x - c*y = d - b

求出 满足方程的最小非负整数对   x,y





AC代码:

  1. #include<stdio.h>  
  2. #include <math.h>  
  3. int gcd(int a,int b,int &x,int &y){  
  4.     if (b==0){  
  5.         x=1,y=0;  
  6.         return a;  
  7.     }  
  8.     int ans=gcd(b,a%b,y,x);  
  9.     y-=(a/b)*x;  
  10.     return ans;  
  11. }  
  12. int main (){  
  13.     int a,b,c,d;  
  14.     while (scanf ("%d%d%d%d",&a,&b,&c,&d)!=EOF){  
  15.         int x,y;  
  16.         int g=gcd(a,-c,x,y);  
  17.         if ((d-b)%g!=0){//    不满足条件   
  18.             printf ("-1\n");  
  19.             continue;  
  20.         }  
  21.         x=x*(d-b)/g;//     求出方程的x   
  22.         //        接下来三行求出最小非负整数x   
  23.         x=x%(-c/g);   
  24.         if (x<0)  
  25.             x+=fabs(-c/g);   
  26.         y=((d-b)-a*x)/(-c); //     求出方程的y   
  27.         while (y<0){  
  28.             x=x+fabs(-c/g);//          
  29.             y=((d-b)-a*x)/(-c);  
  30.         }  
  31.         printf ("%d\n",b+x*a);    
  32.     }  
  33.     return 0;  
  34. }  
#include<stdio.h>
#include <math.h>
int gcd(int a,int b,int &x,int &y){
	if (b==0){
		x=1,y=0;
		return a;
	}
	int ans=gcd(b,a%b,y,x);
	y-=(a/b)*x;
	return ans;
}
int main (){
	int a,b,c,d;
	while (scanf ("%d%d%d%d",&a,&b,&c,&d)!=EOF){
		int x,y;
		int g=gcd(a,-c,x,y);
		if ((d-b)%g!=0){//    不满足条件 
			printf ("-1\n");
			continue;
		}
		x=x*(d-b)/g;//     求出方程的x 
		//        接下来三行求出最小非负整数x 
		x=x%(-c/g); 
		if (x<0)
			x+=fabs(-c/g); 
		y=((d-b)-a*x)/(-c);	//     求出方程的y 
		while (y<0){
			x=x+fabs(-c/g);//        
			y=((d-b)-a*x)/(-c);
		}
		printf ("%d\n",b+x*a);	
	}
	return 0;
}




其实这题可以水

AC代码:

  1. #include<stdio.h>  
  2. int main (){  
  3.     int a,b,c,d;  
  4.     scanf("%d%d%d%d",&a,&b,&c,&d);  
  5.     int flag=1;  
  6.     for (int i=1;i<=200&&flag;i++){  
  7.         for (int j=1;j<=200&&flag;j++){  
  8.             if ((i*a-j*c)==(d-b+a-c)){  
  9.                 printf ("%d\n",d+(j-1)*c);  
  10.                 flag=0;  
  11.             }  
  12.         }     
  13.     }   
  14.     if (flag)  
  15.         printf ("-1\n");  
  16.     return 0;  
  17. }   
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值