去中心化联邦学习思想

去中心化联邦学习是一种保护用户隐私的分散式机器学习方法。与集中式联邦学习相比,去中心化联邦学习更加注重保护用户数据隐私,同时也更具有扩展性和健壮性。

在去中心化联邦学习中,每个设备都使用本地数据进行模型训练,并将模型更新发送给周围的邻居设备。这些邻居设备可以接受更新并根据其自身的本地数据进行模型训练。该过程反复执行多次,直到所有设备的模型达到收敛状态。

相较于其他的联邦学习方式,去中心化联邦学习不需要集中式服务器来协调设备之间的通信,因此极大地减少了通信开销和单点故障风险。

算法公式
假设有 n n n个设备 D 1 , D 2 , . . . , D n D_1, D_2, ..., D_n D1,D2,...,Dn共同参与联邦学习任务。我们的目标是学习一个全局模型 θ \theta θ,使得每个设备 i i i都能够使用本地数据进行模型推理。

在去中心化联邦学习中,首先每个设备都初始化一个本地模型 θ i \theta_i θi。每一轮迭代由以下步骤组成:

选择一个随机子集 S t ⊆ 1 , 2 , . . . , n S_t \subseteq {1,2,...,n} St1,2,...,n作为通信的设备组。
每个设备 i ∈ S t i \in S_t iSt使用本地数据计算梯度 ∇ θ i J ( θ i ) \nabla_{\theta_i} J(\theta_i) θiJ(θi),其中 J ( θ i ) J(\theta_i) J(θi)是本地模型 θ i \theta_i θi的损失函数。
对于每个设备 i ∈ S t i \in S_t iSt,将梯度 ∇ θ i J ( θ i ) \nabla_{\theta_i} J(\theta_i) θiJ(θi)发送给所有邻居设备 j ∈ N i j \in N_i jNi,其中 N i N_i Ni表示设备 i i i的邻居设备集合。
对于每个设备 i i i,更新本地模型 θ i \theta_i θi,得到新模型 θ i t + 1 = θ i t − η ⋅ 1 ∣ S t ∣ ∑ j ∈ S t ∇ θ j J ( θ j ) \theta_i^{t+1} = \theta_i^t - \eta \cdot \frac{1}{|S_t|}\sum_{j \in S_t} \nabla_{\theta_j} J(\theta_j) θit+1=θitηSt1jStθjJ(θj),其中 η \eta η是学习率。
直到所有设备的模型 θ 1 t + 1 , θ 2 t + 1 , . . . , θ n t + 1 {\theta_1^{t+1},\theta_2^{t+1},...,\theta_n^{t+1}} θ1t+1,θ2t+1,...,θnt+1均更新完毕,进入下一轮迭代。
在去中心化联邦学习中,每个设备只与其邻居设备通信,因此通信开销较小。此外,通过在每轮迭代中随机选择设备组进行通信,可以增加学习过程的随机性和稳定性。但是,由于每个设备的模型更新仅基于其邻居设备的信息,因此可能存在模型发散或不能收敛的问题。

去中心化联邦学习算法的主要优点是对用户隐私具有更好的保护,而且通常比集中式的联邦学习更具有可扩展性和健壮性。

这里提供一些关于去中心化联邦学习的参考资料:

《Communication-Efficient Learning of Deep Networks from Decentralized Data》

《Federated Learning: Strategies for Improving Communication Efficiency》

《Towards Federated Learning at Scale: System Design》

《Decentralized Federated Learning: A Segmented Gossip Approach》

《A Comprehensive Survey on Federated Learning》

《Federated Learning with Non-IID Data》

以上论文均对去中心化联邦学习进行了较为详细的研究和介绍,可以作为进一步了解该领域的参考。

  • 2
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

高山莫衣

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值