在PyTorch中,可以使用torch.dot()函数来计算两个一维张量的点乘(内积)。点乘操作会将两个一维张量按元素相乘,并返回一个标量(0维张量)作为结果。
下面是一个示例代码,展示了如何进行一维张量的点乘:
import torch
x = torch.tensor([1, 2, 3])
y = torch.tensor([4, 5, 6])
dot_product = torch.dot(x, y)
print(dot_product)
输出结果为:
tensor(32)
在这个例子中,我们定义了两个一维张量x和y,并使用torch.dot(x, y)计算它们的点乘。结果32是张量x和y的对应元素相乘后的累加和。
点乘操作要求两个张量具有相同的形状,并且都是一维张量。如果张量的形状不匹配,将会引发错误。
在PyTorch中,可以使用torch.dot()计算两个一维张量的内积,返回一个标量。示例展示了如何对张量x和y进行点乘,得到32的结果。点乘要求张量形状相同,否则会引发错误。
4万+

被折叠的 条评论
为什么被折叠?



