torch 离散数据依概率抽样

参数介绍

sample = torch.multinomial(x, num_samples=10, replacement=True)

x表示概率分布,num_samples=10表示每一次抽取10个元素,replacement=True/Fasle表示不放回抽样 / 放回抽样

案例

假设10个数字分别为x1 ~ x10,要从10个数字里面抽取一个数字,下面的张量为3行10列的概率矩阵。
第一种情况,抽中每一个数字的概率分别为:[0.1005, 0.0987, 0.1000, 0.0988, 0.1007, 0.0999, 0.1005, 0.1018, 0.1003,0.0988],将这一行作为概率分布进行抽样,抽取1个样本。同理第二种情况、第三种情况的概率分布分别是张量的第2、3行。

tensor([[0.1005, 0.0987, 0.1000, 0.0988, 0.1007, 0.0999, 0.1005, 0.1018, 0.1003,0.0988],
        [0.1011, 0.0985, 0.1005, 0.0997, 0.1010, 0.0996, 0.1004, 0.1027, 0.0992,0.0974],
        [0.1005, 0.0992, 0.1006, 0.0997, 0.1005, 0.0995, 0.1001, 0.1013, 0.0998,0.0987]])

要从每行作为概率分布的张量中抽取一个样本,可以使用torch.multinomial()函数。该函数接受一个包含概率分布的张量和要抽取的样本数量作为输入,并返回对应的样本索引。

下面是一个示例代码,展示如何从给定的概率分布中抽取一个样本:

求解

import torch

x = torch.tensor([[0.1005, 0.0987, 0.1000, 0.0988, 0.1007, 0.0999, 0.1005, 0.1018, 0.1003, 0.0988],
                  [0.1011, 0.0985, 0.1005, 0.0997, 0.1010, 0.0996, 0.1004, 0.1027, 0.0992, 0.0974],
                  [0.1005, 0.0992, 0.1006, 0.0997, 0.1005, 0.0995, 0.1001, 0.1013, 0.0998, 0.0987]])

sample = torch.multinomial(x, num_samples=1)
print(sample)

输出结果为:

tensor([[6],
        [7],
        [7]])

在这个例子中,我们使用torch.multinomial(x, num_samples=1)从输入张量x的每行作为概率分布中抽取1个样本。num_samples=1表示每行只抽取一个样本。结果是一个包含抽样索引的张量,其中每行的索引表示从对应行的概率分布中抽取的样本。

请注意,抽取的样本索引是以列的形式返回的,即每行一个索引。如果您想获取抽取的样本值而不是索引,可以使用索引操作符([ ])将索引应用于原始张量,如下所示:

y = torch.tensor([11,12,13,14,15,16,17,18,19,20])
sample_values = y[torch.arange(y.size(0)), sample.squeeze()]
print(sample_values)

在这个例子中,我们使用索引操作符[]将抽样索引应用于原始张量x,并通过squeeze()函数将结果的形状从(3, 1)变为(3,)。然后,我们得到了抽取的样本值的张量sample_values,其中每个元素表示从对应行的概率分布中抽取的样本值。

torch.multinomial()函数根据概率分布进行抽样,因此输入的概率分布应该是非负数且总和为1

`torch.multinomial()`函数是PyTorch中的一个函数,用于从多项式分布中抽取样本。多项式分布是一种离散概率分布,它描述了在一系列独立的重复试验中,每个试验有多个可能的结果,每个结果发生的概率是固定的,且每个试验之间的结果是相互独立的。在深度学习中,多项式分布通常用于对分类问题进行建模。 `torch.multinomial()`函数的语法如下: ```python torch.multinomial(input, num_samples, replacement=False, *, generator=None, out=None) -> LongTensor ``` 其中,参数`input`是一个张量,表示多项式分布的概率分布。参数`num_samples`是一个整数,表示要抽取的样本数量。参数`replacement`是一个布尔值,表示是否进行有放回的抽样。如果为`True`,则进行有放回的抽样;如果为`False`,则进行无放回的抽样。参数`generator`是一个随机数生成器,用于生成随机数。参数`out`是一个输出张量,用于存储抽样结果。 以下是一个使用`torch.multinomial()`函数从多项式分布中抽取样本的例子: ```python import torch # 定义一个包含五个类别的多项式分布 probs = torch.tensor([0.1, 0.2, 0.3, 0.25, 0.15]) # 将分布转化成二维形式 probs_2d = probs.view(1, -1) # 抽取三个样本 samples = torch.multinomial(probs_2d, 3) print(samples) # tensor([[2, 3, 2]]) ``` 上述代码中,我们首先定义了一个包含五个类别的多项式分布,然后将其转化成二维形式。接着,我们使用`torch.multinomial()`函数从中抽取了三个样本,并将结果存储在`samples`张量中。最后,我们输出了`samples`张量的值。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

高山莫衣

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值