从分布 P 中抽取随机变量 X的期望值

符号 E X ∼ P [ X ] E_{X \sim P}[X] EXP[X] 表示从分布 P P P 中抽取随机变量 X X X 的期望值。这种表示强调了随机变量 X X X 是服从特定概率分布 P P P 的。

形式定义

在这种情况下,期望值的计算依赖于 P P P 的性质:

  1. 离散随机变量
    如果 X X X 是离散的,且其概率质量函数为 P ( X = x i ) = p i P(X = x_i) = p_i P(X=xi)=pi,则期望值为:
    E X ∼ P [ X ] = ∑ i x i ⋅ p i E_{X \sim P}[X] = \sum_{i} x_i \cdot p_i EXP[X]=ixipi

  2. 连续随机变量
    如果 X X X 是连续的,且其概率密度函数为 p ( x ) p(x) p(x)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

高山莫衣

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值