驱动支持的最高CUDA版本与实际安装的Runtime版本

查看电脑上安装的CUDA版本的多种方法,适用于不同系统和场景。


方法一:通过命令行工具

1. 查看CUDA Driver API版本(显卡驱动支持的CUDA版本)
  • 命令nvidia-smi
  • 操作
    1. 打开终端(Windows为CMD/PowerShell,Linux/macOS为Terminal)。
    2. 输入命令后,顶部显示的 CUDA Version 是驱动支持的最高CUDA版本,可能与实际安装的Runtime版本不同。
    nvidia-smi
    
    输出示例
    +-------------------------------+----------------------+----------------------+
    | NVIDIA-SMI 535.154         Driver Version: 535.154       CUDA Version: 12.2 |
    
2. 查看CUDA Runtime版本(实际安装的CUDA Toolkit版本)
  • 命令nvcc -Vnvcc --version
  • 操作
    1. 若已安装CUDA Toolkit,此命令会显示当前Runtime版本。
    2. 若提示“nvcc未找到”,需检查CUDA是否安装或环境变量是否配置正确。
    nvcc -V
    
    输出示例
    nvcc: NVIDIA (R) Cuda compiler driver
    Built with CUDA Version 11.8.0
    

方法二:通过NVIDIA控制面板(仅Windows)

  1. 右键桌面空白处 → 选择 NVIDIA控制面板
  2. 点击左下角 系统信息组件 标签页。
  3. 找到 NVCUDA.DLL 条目,右侧显示版本号为CUDA Runtime版本。

方法三:通过文件系统查看

Windows系统
  • 路径C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\
    • 此目录下的子文件夹(如 v11.8)即为已安装的CUDA版本。
Linux/macOS系统
  • 命令cat /usr/local/cuda/version.txt
    • 若显示文件不存在,检查是否已正确安装CUDA Toolkit。

方法四:通过Python环境(适用于深度学习框架用户)

  • PyTorch/TensorFlow代码
    import torch
    print(torch.version.cuda)  # 输出如 "11.8"
    
    注意:此版本是框架编译时使用的CUDA Runtime版本,可能与系统安装的版本不同。

常见问题与解决

  1. nvcc 命令找不到

    • 原因:CUDA Toolkit未安装或环境变量未配置。
    • 解决:重新安装CUDA Toolkit,并确保 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vX.Y\bin 添加到系统 PATH 中。
  2. Driver与Runtime版本不一致

    • 说明nvidia-smi 显示驱动支持的CUDA版本,nvcc -V 显示实际安装的Runtime版本,两者可不同。

总结

  • 推荐步骤
    1. 运行 nvidia-smi 查看驱动支持的CUDA版本。
    2. 使用 nvcc -V 或文件系统路径验证实际安装的Runtime版本。
    3. 若使用深度学习框架,通过代码确认编译环境版本。
  • 多版本管理:通过环境变量调整 PATH 优先级,或使用虚拟环境隔离不同版本。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

高山莫衣

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值