Datawhale任务三:决策树算法梳理

决策树算法梳理
一、信息论基础(熵 联合熵 条件熵 信息增益 基尼不纯度)
1.熵
本是热力学中表征物质状态的参量之一,用符号S表示,其物理意义是体系混乱程度的度量。对于机器学习算法来说,熵指代香农熵,是一种不确定性度量。它是表示随机变量不确定的度量,是对所有可能发生的事件产生的信息量的期望。对于事件X,有n种可能结果,且概率分别为p1,p2,…,pn,则熵H(X)为:
在这里插入图片描述
H(X) 就被称为随机变量 x 的熵,它是表示随机变量不确定的度量,是对所有可能发生的事件产生的信息量的期望。
基本性质
1.均匀分布具有最大的不确定性
2.对于独立事件,不确定性是可加的
3.加入发生概率为0的结果并不会有影响
4.不确定性的度量应该是连续的
5.具有更多可能结果的均匀分布有更大的不确定性
6.事件拥有非负的不确定性
7.有确定结果的事件具有0不确定性
8.调转参数顺序没有影响

2.联合熵:两个随机变量X,Y的联合分布,可以形成联合熵Joint Entropy,用H(X,Y)表示。
将一维随机变量分布推广到多维随机变量分布,则其联合熵 (Joint entropy) 为:
在这里插入图片描述
3.条件熵:在已知随机变量 X 的条件下随机变量 Y 的不确定性。条件熵 H(Y|X) 定义为 X 给定条件下 Y 的条件概率分布的熵对 X 的数学期望:
在这里插入图片描述
条件熵 H(Y|X) 相当于联合熵 H(X,Y) 减去单独的熵 H(X),即
H(Y|X)=H(X,Y)−H(X)

4.信息增熵
以某特征划分数据集前后的熵的差值。即待分类集合的熵和选定某个特征的条件熵之差(这里只的是经验熵或经验条件熵,由于真正的熵并不知道,是根据样本计算出来的),公式如下:
在这里插入图片描述
5.基尼不纯度
将来自集合中的某种结果随机应用于集合中某一数据项的预期误差率。即从一个数据集中随机选取子项,度量其被错误的划分到其他组里的概率。
在这里插入图片描述
参考:
https://baijiahao.baidu.com/s?id=1615832462981347284&wfr=spider&for=pc
http://www.cnblogs.com/kyrieng/p/8694705.html
https://www.cnblogs.com/fantasy01/p/4581803.html

二、决策树的不同分类算法(ID3算法、C4.5、CART分类树)的原理及应用场景
1.信息增益( ID3算法):以某特征划分数据集前后的熵的差值。
可以使用划分前后集合熵的差值来衡量使用当前特征对于样本集合D划分效果的好坏。
划分前样本集合D的熵是一定的 ,entroy(前),使用某个特征A划分数据集D,计算划分后的数据子集的熵 entroy(后)
信息增益 = entroy(前) - entroy(后)

在这里插入图片描述
应用于计算时间是例子个数、特征属性个数、节点个数之积的线性函数

2.信息增益比(C4.5算法 ): 在信息增益的基础之上乘上一个惩罚参数。特征个数较多时,惩罚参数较小;特征个数较少时,惩罚参数较大。惩罚参数:数据集D以特征A作为随机变量的熵的倒数,即,将特征A取值相同的样本划分到同一个子集中(之前所说数据集的熵是依据类别进行划分的)
在这里插入图片描述
信息增益比 = 惩罚参数 * 信息增益
在这里插入图片描述
3.基尼指数(CART分类树):表示在样本集合中一个随机选中的样本被分错的概率。
基尼指数(基尼不纯度)= 样本被选中的概率 * 样本被分错的概率

在这里插入图片描述
参考
https://www.cnblogs.com/muzixi/p/6566803.html

三、回归树原理
为成功构建以分段常数为叶节点的树,需要度量出数据的一致性。第3章使用树进行分类,会在给定节点时计算数据的混乱度。那么如何计算连续型数值的混乱度呢?在这里,计算连续型数值的混乱度是非常简单的。首先计算所有数据的均值,然后计算每条数据的值到均值的差值。为了对正负差值同等看待,一般使用绝对值或平方值来代替上述差值。上述做法有点类似于前面介绍过的统计学中常用的方差计算。唯一不同就是,方差是平方误差的均值(均方差),而这里需要的是平方误差的总值(总方差)。总方差可以通过均方差乘以数据集中样本点的个数来得到。

参考:
https://zhuanlan.zhihu.com/p/35351556

四、决策树防止过拟合手段
预剪枝:是在决策树的生成过程中,对每个结点在划分前先进行估计,若当前结点的划分不能带来决策树泛化性能提升,则停止划分即结束树的构建并将当前节点标记为叶结点;
后剪枝:是先从训练集生成一棵完整的决策树,然后自底向上地对叶结点进行考察,若将该结点对应的子树替换为叶结点能带来决策树泛化为性能提升,则将该子树替换为叶结点。泛化性能的提升可以使用交叉验证数据来检查修剪的效果,通过使用交叉验证数据,测试扩展节点是否会带来改进。如果显示会带来改进,那么我们可以继续扩展该节点。但是,如果精度降低,则不应该扩展,节点应该转换为叶节点。

参考:
https://www.zhihu.com/search?type=content&q=决策树防止过拟合

五、模型评估
分类树:Accuracy、Precision、Recall、F1 score、ROC曲线和AUC、PR曲线
回归树:平均绝对误差MAE、均方误差MSE、R-squared

六、sklearn参数详解,Python绘制决策树

‘’’
scikit-learn中有两类决策树,它们均采用优化的CART决策树算法。
‘’’
from sklearn.tree import DecisionTreeRegressor
‘’’
回归决策树
‘’’
DecisionTreeRegressor(criterion=“mse”,
splitter=“best”,
max_depth=None,
min_samples_split=2,
min_samples_leaf=1,
min_weight_fraction_leaf=0.,
max_features=None,
random_state=None,
max_leaf_nodes=None,
min_impurity_decrease=0.,
min_impurity_split=None,
presort=False)
‘’’
参数含义:
1.criterion:string, optional (default=“mse”)
它指定了切分质量的评价准则。默认为’mse’(mean squared error)。
2.splitter:string, optional (default=“best”)
它指定了在每个节点切分的策略。有两种切分策咯:
(1).splitter=‘best’:表示选择最优的切分特征和切分点。
(2).splitter=‘random’:表示随机切分。
3.max_depth:int or None, optional (default=None)
指定树的最大深度。如果为None,则表示树的深度不限,直到
每个叶子都是纯净的,即叶节点中所有样本都属于同一个类别,
或者叶子节点中包含小于min_samples_split个样本。
4.min_samples_split:int, float, optional (default=2)
整数或者浮点数,默认为2。它指定了分裂一个内部节点(非叶子节点)
需要的最小样本数。如果为浮点数(0到1之间),最少样本分割数为ceil(min_samples_split * n_samples)
5.min_samples_leaf:int, float, optional (default=1)
整数或者浮点数,默认为1。它指定了每个叶子节点包含的最少样本数。
如果为浮点数(0到1之间),每个叶子节点包含的最少样本数为ceil(min_samples_leaf * n_samples)
6.min_weight_fraction_leaf:float, optional (default=0.)
它指定了叶子节点中样本的最小权重系数。默认情况下样本有相同的权重。
7.max_feature:int, float, string or None, optional (default=None)
可以是整数,浮点数,字符串或者None。默认为None。
(1).如果是整数,则每次节点分裂只考虑max_feature个特征。
(2).如果是浮点数(0到1之间),则每次分裂节点的时候只考虑int(max_features * n_features)个特征。
(3).如果是字符串’auto’,max_features=n_features。
(4).如果是字符串’sqrt’,max_features=sqrt(n_features)。
(5).如果是字符串’log2’,max_features=log2(n_features)。
(6).如果是None,max_feature=n_feature。
8.random_state:int, RandomState instance or None, optional (default=None)
(1).如果为整数,则它指定了随机数生成器的种子。
(2).如果为RandomState实例,则指定了随机数生成器。
(3).如果为None,则使用默认的随机数生成器。
9.max_leaf_nodes:int or None, optional (default=None)
(1).如果为None,则叶子节点数量不限。
(2).如果不为None,则max_depth被忽略。
10.min_impurity_decrease:float, optional (default=0.)
如果节点的分裂导致不纯度的减少(分裂后样本比分裂前更加纯净)大于或等于min_impurity_decrease,则分裂该节点。
个人理解这个参数应该是针对分类问题时才有意义。这里的不纯度应该是指基尼指数。
回归生成树采用的是平方误差最小化策略。分类生成树采用的是基尼指数最小化策略。
加权不纯度的减少量计算公式为:
min_impurity_decrease=N_t / N * (impurity - N_t_R / N_t * right_impurity
- N_t_L / N_t * left_impurity)
其中N是样本的总数,N_t是当前节点的样本数,N_t_L是分裂后左子节点的样本数,
N_t_R是分裂后右子节点的样本数。impurity指当前节点的基尼指数,right_impurity指
分裂后右子节点的基尼指数。left_impurity指分裂后左子节点的基尼指数。
11.min_impurity_split:float
树生长过程中早停止的阈值。如果当前节点的不纯度高于阈值,节点将分裂,否则它是叶子节点。
这个参数已经被弃用。用min_impurity_decrease代替了min_impurity_split。
12.presort: bool, optional (default=False)
指定是否需要提前排序数据从而加速寻找最优切分的过程。设置为True时,对于大数据集
会减慢总体的训练过程;但是对于一个小数据集或者设定了最大深度的情况下,会加速训练过程。
属性:
1.feature_importances_ : array of shape = [n_features]
特征重要性。该值越高,该特征越重要。
特征的重要性为该特征导致的评价准则的(标准化的)总减少量。它也被称为基尼的重要性
2.max_feature_:int
max_features推断值。
3.n_features_:int
执行fit的时候,特征的数量。
4.n_outputs_ : int
执行fit的时候,输出的数量。
5.tree_ : 底层的Tree对象。
Notes:
控制树大小的参数的默认值(例如max_depthmin_samples_leaf等)导致完全成长和未剪枝的树,
这些树在某些数据集上可能表现很好。为减少内存消耗,应通过设置这些参数值来控制树的复杂度和大小。
方法:
1.fit(X,y):训练模型。
2.predict(X):预测。
‘’’

from sklearn.tree import DecisionTreeClassifier
‘’’
分类决策树
‘’’
DecisionTreeClassifier(criterion=“gini”,
splitter=“best”,
max_depth=None,
min_samples_split=2,
min_samples_leaf=1,
min_weight_fraction_leaf=0.,
max_features=None,
random_state=None,
max_leaf_nodes=None,
min_impurity_decrease=0.,
min_impurity_split=None,
class_weight=None,
presort=False)
‘’’
参数含义:
1.criterion:string, optional (default=“gini”)
(1).criterion=‘gini’,分裂节点时评价准则是Gini指数。
(2).criterion=‘entropy’,分裂节点时的评价指标是信息增益。
2.max_depth:int or None, optional (default=None)。指定树的最大深度。
如果为None,表示树的深度不限。直到所有的叶子节点都是纯净的,即叶子节点
中所有的样本点都属于同一个类别。或者每个叶子节点包含的样本数小于min_samples_split。
3.splitter:string, optional (default=“best”)。指定分裂节点时的策略。
(1).splitter=‘best’,表示选择最优的分裂策略。
(2).splitter=‘random’,表示选择最好的随机切分策略。
4.min_samples_split:int, float, optional (default=2)。表示分裂一个内部节点需要的做少样本数。
(1).如果为整数,则min_samples_split就是最少样本数。
(2).如果为浮点数(0到1之间),则每次分裂最少样本数为ceil(min_samples_split * n_samples)
5.min_samples_leaf: int, float, optional (default=1)。指定每个叶子节点需要的最少样本数。
(1).如果为整数,则min_samples_split就是最少样本数。
(2).如果为浮点数(0到1之间),则每个叶子节点最少样本数为ceil(min_samples_leaf * n_samples)
6.min_weight_fraction_leaf:float, optional (default=0.)
指定叶子节点中样本的最小权重。
7.max_features:int, float, string or None, optional (default=None).
搜寻最佳划分的时候考虑的特征数量。
(1).如果为整数,每次分裂只考虑max_features个特征。
(2).如果为浮点数(0到1之间),每次切分只考虑int(max_features * n_features)个特征。
(3).如果为’auto’或者’sqrt’,则每次切分只考虑sqrt(n_features)个特征
(4).如果为’log2’,则每次切分只考虑log2(n_features)个特征。
(5).如果为None,则每次切分考虑n_features个特征。
(6).如果已经考虑了max_features个特征,但还是没有找到一个有效的切分,那么还会继续寻找
下一个特征,直到找到一个有效的切分为止。
8.random_state:int, RandomState instance or None, optional (default=None)
(1).如果为整数,则它指定了随机数生成器的种子。
(2).如果为RandomState实例,则指定了随机数生成器。
(3).如果为None,则使用默认的随机数生成器。
9.max_leaf_nodes: int or None, optional (default=None)。指定了叶子节点的最大数量。
(1).如果为None,叶子节点数量不限。
(2).如果为整数,则max_depth被忽略。
10.min_impurity_decrease:float, optional (default=0.)
如果节点的分裂导致不纯度的减少(分裂后样本比分裂前更加纯净)大于或等于min_impurity_decrease,则分裂该节点。
加权不纯度的减少量计算公式为:
min_impurity_decrease=N_t / N * (impurity - N_t_R / N_t * right_impurity
- N_t_L / N_t * left_impurity)
其中N是样本的总数,N_t是当前节点的样本数,N_t_L是分裂后左子节点的样本数,
N_t_R是分裂后右子节点的样本数。impurity指当前节点的基尼指数,right_impurity指
分裂后右子节点的基尼指数。left_impurity指分裂后左子节点的基尼指数。
11.min_impurity_split:float
树生长过程中早停止的阈值。如果当前节点的不纯度高于阈值,节点将分裂,否则它是叶子节点。
这个参数已经被弃用。用min_impurity_decrease代替了min_impurity_split。
12.class_weight:dict, list of dicts, “balanced” or None, default=None
类别权重的形式为{class_label: weight}
(1).如果没有给出每个类别的权重,则每个类别的权重都为1。
(2).如果class_weight=‘balanced’,则分类的权重与样本中每个类别出现的频率成反比。
计算公式为:n_samples / (n_classes * np.bincount(y))
(3).如果sample_weight提供了样本权重(由fit方法提供),则这些权重都会乘以sample_weight。
13.presort:bool, optional (default=False)
指定是否需要提前排序数据从而加速训练中寻找最优切分的过程。设置为True时,对于大数据集
会减慢总体的训练过程;但是对于一个小数据集或者设定了最大深度的情况下,会加速训练过程。
属性:
1.classes_:array of shape = [n_classes] or a list of such arrays
类别的标签值。
2.feature_importances_ : array of shape = [n_features]
特征重要性。越高,特征越重要。
特征的重要性为该特征导致的评价准则的(标准化的)总减少量。它也被称为基尼的重要性
3.max_features_ : int
max_features的推断值。
4.n_classes_ : int or list
类别的数量
5.n_features_ : int
执行fit后,特征的数量
6.n_outputs_ : int
执行fit后,输出的数量
7.tree_ : Tree object
树对象,即底层的决策树。
方法:
1.fit(X,y):训练模型。
2.predict(X):预测
3.predict_log_poba(X):预测X为各个类别的概率对数值。
4.predict_proba(X):预测X为各个类别的概率值。

【搬运工】https://blog.csdn.net/qq_16000815/article/details/80954039

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值