JamePrin
码龄4年
关注
提问 私信
  • 博客:35,042
    35,042
    总访问量
  • 71
    原创
  • 1,527,142
    排名
  • 918
    粉丝
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2020-10-31
博客简介:

weixin_52103757的博客

查看详细资料
个人成就
  • 获得32次点赞
  • 内容获得27次评论
  • 获得164次收藏
创作历程
  • 3篇
    2022年
  • 70篇
    2021年
成就勋章
TA的专栏
  • 因果发现
  • python网络爬虫实战
    3篇
  • 操作系统
    1篇
  • 神经网络与深度学习笔记
    11篇
  • 图像识别与文字处理
    3篇
  • 高等数学
    1篇
  • 数据结构基于python
    7篇
  • 机器学习
    11篇
  • Leetcode
    24篇
  • 流畅的Python
    3篇
  • 矩阵求导
    1篇
  • 斐波那契数列
    1篇
  • SQL语句
    2篇
  • Pyqt5
    2篇
  • 协同过滤
    1篇
  • 差分隐私
    1篇
  • Python 数据科学手册
    2篇
  • Matplotlib
    2篇
兴趣领域 设置
  • Python
    python
  • 人工智能
    深度学习神经网络自然语言处理tensorflow数据分析
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

367人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

操作系统:位示图与盘块号相互转换

一套公式总结 盘块号b和位示图(i,j) 的转换方法
原创
发布博客 2022.06.19 ·
2249 阅读 ·
1 点赞 ·
1 评论 ·
10 收藏

Transformer 中 比较晦涩难懂的东西

Transformer中比较晦涩难懂的东西,你想知道的输出层输入什么等等内容都详细写在这里了!!!
原创
发布博客 2022.04.10 ·
1559 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

图像处理代码1【改变格式、缩略图、切九宫格】

# -*- coding:utf-8 -*-# Author: I_am_Vic (PL Z)# Product_name: PyCharm# File_name: CV_Preprocess# @Time: 10:01 2022/2/12import osimport sysfrom PIL import Image, TarIOdef Image_FormPreprocess_to_X(in_path="data/", X=".jpg"):
原创
发布博客 2022.02.12 ·
1847 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

# keras学习【入门基础】-- 看完就入门

前驱课程: 《吴恩达深度学习》听完课才有一些专有名词的概念首先是导库import tensorflow as tffrom tensorflow import keras张量设置和使用创建恒定张量x = tf.constant([[1,3], [1, 2]])# 可使用.numpy() 改变typex.numpy()矩阵创建# 1/0矩阵tf.ones(shape=(,))tf.zeros(shape=(,))# 正态分布tf.random.normal(shape=(
原创
发布博客 2021.10.20 ·
350 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

NLP 的各项任务简单介绍(笔记)

英文部分:Combinatory Categorical Grammar( 组合分类语法 )Common sense ( 常识推理 )常识推理任务旨在要求模型超越模式识别。相反,模型应该使用“常识”或世界知识来进行推理。Constituency parsing ( 选区理解 )选区解析的目的是从句子中提取基于选区的解析树,根据短语结构语法表示其句法结构。例子: Sentence (S) | +---------
原创
发布博客 2021.09.30 ·
1204 阅读 ·
1 点赞 ·
0 评论 ·
5 收藏

Keras API认识笔记

from tensorflow import keras.backend as KK.backend.shape(X) # 返回张量 可以看成列表,可以有下标K.all(x, axis=None, keepdims=False) # AND操作,按照轴的选定K.cast(x, dtype) # 改变数据类型,返回的是指定dtype的xK.floatx() # 'float32' # 一维张量(简单理解为数组)K.arange(start, stop=None,..
原创
发布博客 2021.08.14 ·
212 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Transformer

个人理解笔记,并不是全面讲解Self-Attention首先随机初始化Wq,Wk,Wv (个人认为W列对应神经元个数,行是单词的词嵌入长度)X(这里是好多个单词摆放成一个矩阵)乘W(qkv三个矩阵)得到对应的权重q,k,v(X每一行是一个0词)dk是键向量的维度当前一个单词(X的每一行(这里单词按行堆叠)),(当前单词的)q与(与其他单词的)ki(这些k由其他单词x乘Wk得到)分别多次点积除以sqrt(dk)再softmax归一化后得到一个值(个人记作Si(每一个ki对应一个Si,也对应一
原创
发布博客 2021.08.13 ·
1363 阅读 ·
2 点赞 ·
0 评论 ·
10 收藏

Keras函数式API

优点:可以不同于sequential,能够有共享层以及多个输入输出简单介绍Sequentialfrom keras.models import Sequentialfrom keras.layers import Dense#构造model = Sequential([Dense(2, input_shape(1, )), Dense(1)])# ormodel = Sequential()model.add(Dense(2, input_shape(1,)))model.add(D.
原创
发布博客 2021.08.12 ·
133 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

高数下复习提纲.pdf

发布资源 2021.06.16 ·
pdf

同济版高数(下)复习提纲

文章目录第八章 向量代数及空间解析几何第一节第二节第三节 平面及其方程第四节 空间直线及其方程第五节 曲面及其方程第六节 空间曲线及其方程第九章 多元函数微分法及其应用第一节 多元函数的基本概念第二节 偏导数第三节 全微分第四节 多元复合函数的求导法则第五节 隐函数的求导公式第六节 多元函数微分学的几何应用第七节 方向导数与梯度第八节 多元函数的极值及其求法第十章 重积分第一节 二重积分的概念与性质第二节 二重积分的计算法第三节 三重积分第四节 重积分的应用第十一章 曲线积分与曲面积分第一节 第一类曲线
原创
发布博客 2021.06.16 ·
1624 阅读 ·
2 点赞 ·
0 评论 ·
42 收藏

sklearn中的数据预处理和特征工程----【5】嵌入法

嵌入法过程:将所有特征都放入一个循环。这个循环会选出特征子集投入算法进行模型评估。如此反复嵌入法的结果会更加精确到模型的效用本身,对于提高模型效力有更好的效果。但他也有缺点:嵌入法使用的权值系数没有像p值这样能够界定范围的。大量特征对模型有贡献且贡献不一,就很难界定有效的临界值。 计算速度依赖于算法模型的数据。元变换器,可以与任何在拟合后具有coef_,feature_importances_或者参数中可选惩罚项的评估其一起使用(随机森林和树模型就有feature_importances_;逻
原创
发布博客 2021.06.14 ·
337 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

sklearn中的数据预处理和特征工程----【4】相关性过滤

文章目录卡方过滤F检验互信息法过滤法总结寻找与标签有相关性的特征。卡方过滤专门针对离散型标签(分类问题)相关过滤类 feature_selection.chi2计算每个非负(不能计算负数,要进行归一化或者标准化)特征和标签之间的卡方统计量,越高越好(相关性越强)如果检测的方差为0的数据,会提示先用方差过滤结合 feature_selectio.SelectKbest选出卡方分数最高的K个from sklearn.feature_selection import Select
原创
发布博客 2021.06.11 ·
1022 阅读 ·
0 点赞 ·
0 评论 ·
9 收藏

sklearn中的数据预处理和特征工程----【3】方差过滤

Feature Engineering【VarianceThreshold】Feature Extraction从文字,图像,声音等其他非结构化数据提取新信息作为特征Feature Creation已有的特征进行组合,或者相互计算,得到新的特征Feature Selection从所有特征中选择出有意义的,对模型有帮助的特征达到降低计算成本的效果Step**step1 理解业务:**根据常识对项目的数据进行判断相关性从而理解数据无法理解特征过滤嵌入包装降
原创
发布博客 2021.06.10 ·
938 阅读 ·
1 点赞 ·
2 评论 ·
4 收藏

基于python的数据结构之【哈希表ADT】

在python中的 dict 和 set 查找速度很快,内部就是散列表(也叫作哈希表)数组通过下标访问,时间O(1),删除要O(n)链表遍历访问,时间O(n)哈希表就是一种快速定位和删除元素的方法。除了利用元素下标找到,还有一种就是找到【逻辑下标】,再找到这个元素。他通过哈希函数计算一个元素应该放在哪个位置,然后对于一个特定的元素,哈希函数每次计算的下标要一样,而且范围不能超过给定的数组长度举例:有一个数组T,包含M=13个元素,定义一个哈希函数hh(key) = ke
原创
发布博客 2021.06.10 ·
456 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

基于python的数据结构之【双端队列】

python里边有的append,appendleft,clear,count,extend,extendleft,pop,popleft,remove…最基础有:[append, appendleft, pop, popleft] 希望是O(1)的时间复杂度而在过去的内容中有循环双端队列是可以实现的,在这里就将其继承,然后实现以上功能就好了。都比较简单。# -*- coding:utf-8 -*-# Author: Greed_Vic(PL Z)# Product_name:
原创
发布博客 2021.06.09 ·
240 阅读 ·
0 点赞 ·
2 评论 ·
0 收藏

基于python的数据结构之【栈】

栈(LIFO结构){datamethod{pushpopis_empty\begin{cases}data\\method\begin{cases}push\\pop\\is\_empty\end{cases}\end{cases}⎩⎪⎪⎪⎨⎪⎪⎪⎧​datamethod⎩⎪⎨⎪⎧​pushpopis_empty​​# -*- coding:utf-8 -*-# Author: Greed_Vic(PL Z)# Product_name: PyCharm# File_name:
原创
发布博客 2021.06.09 ·
257 阅读 ·
0 点赞 ·
2 评论 ·
0 收藏

基于python的数据结构之【数组Queue】

思路:需要队头队尾指针push操作:每次push, head + 1pop操作:pop队尾,tail + 1确保len(Queue) <= array_size到头之后取模返回就行这一点十分重要,这是能够无限进行pop和push的关键计算方法。不管# -*- coding:utf-8 -*-# Author: Greed_Vic(PL Z)# Product_name: PyCharm# File_name: arrayQ # @
原创
发布博客 2021.06.08 ·
297 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

基于python的数据结构 之 【对列(FIFO结构)】

# -*- coding:utf-8 -*-# Author: Greed_Vic(PL Z)# Product_name: PyCharm# File_name: Queue # @Time: 23:10 2021/6/6from linked_list import * # 利用链表进行队列数据结构 在上一篇博客哦!class Queue(object): def __init__(self, maxsize=None):
原创
发布博客 2021.06.06 ·
165 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

基于python的数据结构 之 【单链表】

# -*- coding:utf-8 -*-# Author: Greed_Vic(PL Z)# Product_name: PyCharm# File_name: linked list # @Time: 21:58 2021/5/17""" 1、 {root、length 2、 {init、append、appendleft、iter_node、remove、find、popleft、clear"""class Node(obje
原创
发布博客 2021.06.06 ·
250 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

基于python的数据结构 之 【双向循环链表】

单链表缺点:remove 时间O(n)单向遍历双链表:有pre结点和next结点循环双端链表:属性:data : root、maxsize、lengthmethod:headnode、tailnode、append、appendleft、remove (这个变为O(1)的时间复杂度)、iter_node、iter_node_reverse# -*- coding:utf-8 -*-# Author: Greed_Vic(PL Z)# Product_n
原创
发布博客 2021.06.06 ·
122 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏
加载更多