深度优先的结构
- 深度优先是通过 循环中的递归 实现的
- 循环是 遍历叶子节点 的循环
- 比如遍历树,遍历图
下面是java深度优先遍历二叉树的代码(这里的两个if相当于遍历每个treenode的子节点)
// 用递归的方法进行先序遍历
public void Digui(TreeNode treeNode) {
qianxuNumList.add(treeNode.val);
if (treeNode.left != null) {
Digui(treeNode.left);
}
if (treeNode.right != null) {
Digui(treeNode.right);
}
}
需要回溯的情况
- 回溯我看来就是 深度优先搜索的特殊情况
- 我们知道,在深搜中,遍历a的子节点b之后,继续遍历c,这是通过循环实现的,c是b的下一个循环项。
- 需要回溯特殊之处在于,在访问过b之后,一些变量的值会被改变
- 所以需要在访问过b之后,恢复访问b之前的状态
- 比如在遍历树的节点时,如果需要用到节点所在的层数,则需要一个变量num来记录当前的层数,每访问一个结点 num++
- 当访问完b的时候,num=k,继续访问c的时候num++ ,num=k+1,但显然B C在同一层,所以需要在访问B之后进行 num- -(这就是回溯)
回溯算法的结构
- 由上面我们知道,回溯算法其实就是因为深度优先伴随着重要变量的改变所以需要在访问结点的前后(也就是进行递归之前后),对这个变量分别进行修改和复原
- 得出回溯的结构(下面只是个例子 )
public void check(int index,List<Integer> item,List<List<Integer>> res,int[] candidates,int tar)
{
int end =get_child(index, tar, candidates);//得到孩子节点
for(int i=index;i<end;i++) //遍历孩子节点
{
item.add(candidates[i]);
tar=tar-candidates[i]; //修改
check(i, item, res, candidates, tar); //递归
tar=tar+candidates[i]; //复原
item.remove(item.size()-1);
}
}
其中,tar就是那个重要变量