数学建模学习笔记(三)——插值算法

插值算法简介

数据分析是在大数据时代下不可获取的一环,合理、全面地分析数据,能够使得决策者在决策时作出最为明智的决定。在数据分析过程中,常常可以使用插值算法来根据已知的数据估算出未知的数据,从而模拟产生一些新的值来满足要求。

一维插值

在许多插值问题中,我们常常研究的是一维插值:
设函数 y = f ( x ) y=f(x) y=f(x) 在区间 [ a , b ] [a, b] [a,b] 上有定义,且已知在点 a ≤ x 0 < x 1 < ⋯ < x n ≤ b a \leq x_0 < x_1 < \cdots < x_n \leq b ax0<x1<<xnb 上的值分别为: y 0 , y 1 , ⋯   , y n , y_0, y_1, \cdots, y_n, y0,y1,,yn,
若存在一简单函数 P ( x ) P(x) P(x),使 P ( x i ) = y i ( i = 0 , 1 , 2 , ⋯   , x n ) P(x_i) = y_i (i = 0, 1, 2, \cdots, x_n) P(xi)=yi(i=0,1,2,,xn)则称 P ( x ) P(x) P(x) f ( x ) f(x) f(x) 的插值函数,点 x 0 , x 1 , ⋯   , x n x_0, x_1, \cdots, x_n x0,x1,,xn 称为插值节点,包含插值节点的区间 [ a , b ] [a, b] [a,b] 称为插值区间,求插值函数 P ( x ) P(x) P(x) 的方法称为插值法。

主要插值法

  1. P ( x ) P(x) P(x) 是次数不超过 n n n 的代数多项式,即 P ( x ) = a 0 + a 1 x + ⋯ + a n x n P(x)=a_0+a_1x+\cdots+a_nx^n P(x)=a0+a1x++anxn
  2. 分段插值:即一段一段的进行插值,得到的插值函数比较复杂,但是准确度较高。
  3. 三角插值:主要会使用傅里叶变换。

插值算法

  1. 拉格朗日插值法

    ∙ \bullet 两个点: ( x 0 , y 0 ) ( x 1 , y 1 ) (x_0, y_0)(x_1, y_1) (x0,y0)(x1,y1)
    可以设出插值函数为: f ( x ) = x − x 0 x 0 − x 1 y 0 + x − x 0 x 1 − x 0 y 1 f(x)=\frac{x-x_0}{x_0-x_1}y_0 + \frac{x-x_0}{x_1-x_0}y_1 f(x)=x0x1xx0y0+x1x0xx0y1

    ∙ \bullet 三个点: ( x 0 , y 0 ) ( x 1 , y 1 ) ( x 2 , y 2 ) (x_0, y_0)(x_1, y_1)(x_2, y_2) (x0,y0)(x1,y1)(x2,y2)
    可以设出插值函数为: f ( x ) = ( x − x 1 ) ( x − x 2 ) ( x 0 − x 1 ) ( x 0 − x 2 ) y 0 + ( x − x 0 ) ( x − x 2 ) ( x 1 − x 0 ) ( x 1 − x 2 ) y 1 + ( x − x 0 ) ( x − x 1 ) ( x 2 − x 0 ) ( x 2 − x 1 ) y 2 f(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)}y_0 + \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)}y_1 \\ + \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)}y_2 f(x)=(x0x1)(x0x2)(xx1)(xx2)y0+(x1x0)(x1x2)(xx0)(xx2)y1+(x2x0)(x2x1)(xx0)(xx1)y2
    以此类推,可以得出4个、5个……点的拉格朗日插值函数。

    然而,拉格朗日插值法在平常的插值问题分析中并不常用,原因是会产生龙格现象(即多项式的次数越高,函数两端的波动便会越大,越不准确)。

  2. 分段线性以及分段二次插值
    顾名思义,就是将函数分为一段一段的,每一段都是用线性函数或者二次函数来进行估计。

  3. 牛顿插值
    f ( x ) = f ( x 0 ) + f [ x 0 , x 1 ] ( x − x 0 ) + f [ x 0 , x 1 , x 2 ] ( x − x 0 ) ( x − x 1 ) + ⋯ + f [ x 0 , x 1 , ⋯   , x n − 2 , x n − 1 ] ( x − x 0 ) ( x − x 1 ) ⋯ ( x − x n − 3 ) ( x − x n − 2 ) + f [ x 0 , x 1 , ⋯   , x n − 1 , x n ] ( x − x 0 ) ( x − x 1 ) ⋯ ( x − x n − 2 ) ( x − x n − 1 ) \begin{aligned}f(x) = &f(x_0) + f[x_0, x_1](x-x_0) \\ &+f[x_0, x_1, x_2](x-x_0)(x-x_1) + \cdots \\ &+f[x_0, x_1, \cdots, x_{n-2}, x_{n-1}](x-x_0)(x-x_1)\cdots(x-x_{n-3})(x-x_{n-2}) \\ &+f[x_0, x_1, \cdots, x_{n-1}, x_n](x-x_0)(x-x_1)\cdots(x-x_{n-2})(x-x_{n-1}) \end{aligned} f(x)=f(x0)+f[x0,x1](xx0)+f[x0,x1,x2](xx0)(xx1)++f[x0,x1,,xn2,xn1](xx0)(xx1)(xxn3)(xxn2)+f[x0,x1,,xn1,xn](xx0)(xx1)(xxn2)(xxn1)
    其中 f [ x 0 , x 1 ] f[x_0, x_1] f[x0,x1] 是指 f ( x ) f(x) f(x) 关于点 x 0 , x 1 x_0, x_1 x0,x1 的差商。

    一阶差商: f [ x 0 , x k ] = f ( x k ) − f ( x 0 ) x k − x 0 f[x_0, x_k] = \frac{f(x_k)-f(x_0)}{x_k-x_0} f[x0,xk]=xkx0f(xk)f(x0)
    二阶差商: f [ x 0 , x 1 , x 2 ] = f [ x 1 , x 2 ] − f [ x 0 , x 1 ] x 2 − x 0 f[x_0, x_1, x_2] = \frac{f[x_1, x_2]-f[x_0, x_1]}{x_2 - x_0} f[x0,x1,x2]=x2x0f[x1,x2]f[x0,x1]
    ⋯ \cdots
    k阶差商: f [ x 0 , x 1 , ⋯   , x k ] = f [ x 1 , ⋯   , x k − 1 , x k ] − f [ x 0 , x 1 , ⋯   , x k − 1 ] x k − x 0 f[x_0, x_1, \cdots, x_k] = \frac{f[x_1, \cdots, x_{k-1}, x_{k}]-f[x_0, x_1, \cdots, x_{k-1}]}{x_k-x_0} f[x0,x1,,xk]=xkx0f[x1,,xk1,xk]f[x0,x1,,xk1]

    但是,牛顿插值法也会存在龙格现象的问题。

  4. 最为常用的两种插值方法:三次埃尔米特插值以及三次样条插值
    4.1 三次埃尔米特插值
    ∙ \bullet 埃尔米特插值原理
    设函数 f ( x ) f(x) f(x)在区间 [ a , b ] [a, b] [a,b]上有 n + 1 个互异节点 a = x 0 < x 1 < x 2 < ⋯ < x n = b a=x_0 < x_1 < x_2 < \cdots < x_n=b a=x0<x1<x2<<xn=b,定义在 [ a , b ] [a, b] [a,b]上函数 f ( x ) f(x) f(x)在节点上满足:
    f ( x i ) = y i , f ′ ( x i ) = y i ′ ( i = 0 , 1 , 2 , ⋯   , n ) ( 2 n + 2 个条件 ) f(x_i)=y_i, f'(x_i)=y_i'(i=0, 1, 2, \cdots, n)(2n+2\text{个条件}) f(xi)=yi,f(xi)=yi(i=0,1,2,,n)(2n+2个条件)
    可唯一确定一个次数不超过 2 n + 1 2n+1 2n+1的多项式 H 2 n + 1 ( x ) = H ( x ) H_{2n+1}(x)=H(x) H2n+1(x)=H(x)满足:
    H ( x j ) = y j , H ′ ( x j ) = m j ( j = 0 , 1 , ⋯   , n ) H(x_j)=y_j, H'(x_j)=m_j(j=0, 1, \cdots, n) H(xj)=yj,H(xj)=mj(j=0,1,,n)其余项为: R ( x ) = f ( x ) − H ( x ) = f 2 n + 2 ( ξ ) ( 2 n + 2 ) ! ω 2 n + 2 ( x ) R(x)=f(x)-H(x)=\frac{f^{2n+2}(\xi)}{(2n+2)!}\omega_{2n+2}(x) R(x)=f(x)H(x)=(2n+2)!f2n+2(ξ)ω2n+2(x)
    三次埃尔米特插值可在 M a t l a b Matlab Matlab 中调用 p h i p phip phip 函数进行直接求取,详见后面的例题。

    4.2 三次样条插值
    ∙ \bullet 三次样条插值条件
    y = f ( x ) y=f(x) y=f(x) 在点 x 0 , x 1 , ⋯   , x n x_0, x_1, \cdots, x_n x0,x1,,xn 的值为 y 0 , y 1 , ⋯   , y n y_0, y_1, \cdots, y_n y0,y1,,yn,若函数 S ( x ) S(x) S(x) 满足下列条件:
    △ \triangle S ( x i ) = f ( x i ) = y i , i = 0 , 1 , 2 , ⋯   , n S(x_i) = f(x_i) = y_i, i = 0, 1, 2,\cdots,n S(xi)=f(xi)=yi,i=0,1,2,,n
    △ \triangle 在每个子区间 [ x i x_i xi, x i + 1 x_{i+1} xi+1]( i = 0 , 1 , 2 , ⋯   , n − 1 i=0,1,2,\cdots,n-1 i=0,1,2,,n1)上 S ( x ) S(x) S(x)是三次多项式;
    △ \triangle S ( x ) S(x) S(x)在[a,b]上二阶连续可微,则称 S ( x ) S(x) S(x)为函数 f ( x ) f(x) f(x)的三次样条插值函数;

    同样,三次样条插值也可在 M a t l a b Matlab Matlab 中调用 s p l i n e spline spline 函数进行直接求取,详见后面的例题。

例题:淡水养殖中池塘水体质量的评估

  1. 原始数据
    池塘水体数据

  2. 三次埃尔米特插值

    M a t l a b Matlab Matlab代码为:

	[n,m]=size(Pool_1);
	x=1:2:15;
	new_x=1:15;
	res_2=zeros(n,size(new_x,2));%pchip埃尔米特

数据处理结果:
三次埃尔米特插值法得出的数据
可以看到,原始数据只有15周内奇数周的数据,经过插值过后,获得了完整的15周池塘水体质量的数据。

  1. 三次样条插值

    M a t l a b Matlab Matlab代码为:

[n,m]=size(Pool_1);
x=1:2:15;
new_x=1:15;
res_1=zeros(n,size(new_x,2));%spline 得到的y

数据处理结果为:
三次样条插值结果
同样也获得了15周内完整的池塘水体质量数据。

注意,这样的插值方法还可以对未来进行短期的预测。方法不同,预测结果同样会有些差异。

如果想要深入了解插值算法,推荐

刘春凤教授:中国大学MOOC数值计算方法

这本书。

有什么好的建议,请一定告诉我哦~~~
请添加图片描述

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值