基于轮廓提取和Hough海天线检测的船只分割

本文介绍了一种基于计算机视觉的船只分割方法,通过Hough变换检测海天线,然后在海天线以上区域进行轮廓提取,实现船只的定位。在Python3.9和Opencv4.5.5环境中,首先获取并处理图片,然后使用Canny算子预处理,接着应用Hough变换找到海天线,最后通过轮廓检测识别船只,达到了较好的分割效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用图像分割技术把下面图片中的船只找出来:

具体思路:基于海天线的图像分割,先运用hough直线检测找到图像中的海天线,在海天线以上利用轮廓提取找到船只。

环境:

Python3.9 Opencv4.5.5.64

具体操作

1.获取图片和灰度图

定义获取图片的函数:

def get_image(path):
    # 获取图片
    img = cv2.imread(path)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    return img, gray

调整图片大小:

img_path = r'路径'
original, gray = get_image(img_path)
height1 = original.shape[0]
width1 = original.shape[1]
height2 = gray.shape[0]
width2 = gray.shape[1]
#获取图片高和宽
sizer = 0.2
original_resize = cv2.resize(original, (int(width1*sizer), int(height1*sizer)), interp
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值