ElasticSearch -- Spark读写ES

介绍

Elasticsearch提供了对Spark的支持,可以将ES中的索引加载为RDD或DataFrame。
官网地址:https://www.elastic.co/guide/en/elasticsearch/hadoop/7.17/spark.html#spark-sql-versions
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在使用elasticsearch-spark插件之前,需要在项目中添加依赖:

<dependency>
   <groupId>org.elasticsearch</groupId>
    <artifactId>elasticsearch-spark-30_2.12</artifactId>
    <version>7.17.5</version>
</dependency>

读取es

加载为rdd

val spark: SparkSession = SparkSession
      .builder().appName("SinkCk")
      .master("local[4]").config("spark.driver.host", "localhost")

      /**
       * 当读取为rdd时需要在创建spark session 时就指定如下三个参数,
       * 当读取为dataframe时不需要初始传入,只需在读取时动态传入即可
       */
      .config("es.nodes", "node01")
      .config("es.port", "9200")
      .config("pushdown", "true")
      //      .config("es.index.auto.create",true)
      .getOrCreate()
      
 val rdd = spark.sparkContext.esJsonRDD("icourt_compliance_online",
      """
        |{
        |  "query": {
        |    "match": {"_id": "df2773d689de18192bb39eceb1a924db"}
        |  }
        |}
        |""".stripMargin)
    rdd.foreach(println)

spark.clouse()

Spark从ES加载出来的数据是JSON String类型的RDD,根据请求体的结构就可以取出来具体的数据。该方式不会有类型转换错误、时间转换错误、不识别数组结构、不识别嵌套结构等,非常推荐该方式。

加载为dataframe

方式一:

val spark: SparkSession = SparkSession
      .builder().appName("SinkCk")
      .master("local[4]").config("spark.driver.host", "localhost")
      .getOrCreate()
      
 val options = Map("es.nodes" -> "node01",
      "es.port" -> "9200", "pushdown" -> "true",
      //spark和es非同一网段时增加该配置
      "es.nodes.wan.only" -> "true",
      //并发更新时, 如果更新在同一条记录则会冲突,增加该配置
      "es.update.retry.on.conflict" -> "3",
      //决定spark会生成多少个partition对应执行的task
      "es.input.max.docs.per.partition" -> "5000000")

val inputDF = spark.read.format("org.elasticsearch.spark.sql")
      .options(options).load("icourt_compliance_online")
      .where("cid = 'df2773d689de18192bb39eceb1a924db'")
      .select("cid", "compliance_id", "ds_source", "status", "notice_main_body", "source_url", "title")
    inputDF.printSchema()
    inputDF.show()
spark.clouse()

方式二:无需在sparkSession初始化时配置es,在写入时配置即可

val inputDF = spark.esDF("icourt_compliance_online", "cid = 'df2773d689de18192bb39eceb1a924db'", options)
inputDF.printSchema()
inputDF.show()
spark.clouse()

写入

以rdd写

  def rddWrite2Es(spark: SparkSession) = {
    val numbers = Map("one" -> 1, "two" -> 2, "three" -> 3)
    val airports = Map("arrival" -> "Otopeni", "SFO" -> "San Fran")
    spark.sparkContext
      .makeRDD(Seq(numbers, airports))
      .saveToEs("spark_es_demo")
  }

以dataframe写

方式一:

  def dataframeWrite2Es(spark: SparkSession) = {
    import spark.implicits._
    val df = Seq((1, "a", 2), (1, "a", 2), (1, "b", 3))
      .toDF("id", "category", "num")
    df.saveToEs("spark_es_demo")
  }

方式二:无需在sparkSession初始化时配置es,在写入时配置即可

  def dataframeWrite2Es(spark: SparkSession) = {
    import spark.implicits._
    val df = Seq((1, "a", 2), (1, "a", 2), (1, "b", 3))
      .toDF("id", "category", "num")
    val options = Map("es.nodes" -> "node01", "es.port" -> "9200",
      //并发更新时, 如果更新在同一条记录则会冲突,增加该配置
      "es.update.retry.on.conflict" -> "3")
    df.write.format("org.elasticsearch.spark.sql")
      .options(options).mode(SaveMode.Append)
      .save("spark_es_demo")
  }

structured streaming写

df
  .writeStream
  .outputMode(OutputMode.Append())
  .format("es")
  .option("checkpointLocation", "hdfs://hadoop:8020/checkpoint/test01")
  .options(options)
  .start("streaming_2_es")
  .awaitTermination()

注意

  1. 写入es时索引是自动创建的,也可以在创建sparkSession时设置不自动创建: SparkSession.builder().config("es.index.auto.create",false),如果已写入时已存在相关索引,则会进行mapping融合(不同mapping融合为一个mapping),或者也可以删除原索引:curl -XDELETE "http://localhost:9200/index"
  2. 插入数据时_id是自动生成的,如果需要以数据中某字段作为_id,则在创建sparkSession时设置es.mapping.id:SparkSession.builder().config("es.mapping.id","id")
  3. 分片数和备份数默认都是1,这个是可以随时修改更新的(可使用官方给的kibana工具)

一些配置

配置信息:ElasticSearch-Spark-Configuration
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

一些bug

Position for ‘xxx.xxx’ not found in row; typically this is caused by a mapping inconsistency

错误原因

es-spark插件无法解析数组嵌套类型,解析报错,相关bug:Position for ‘xxx.xxx’ not found in row; typically this is caused by a mapping inconsistency

解决

  1. 增加配置,读取时排除这些字段: "es.read.field.exclude" -> "defendant_litigant,prosecutor_litigant"
  2. 使用rdd读取,需要自己映射schema

Field ‘xx’ is backed by an array but the associated Spark Schema does not reflect this;

错误原因

因为es的mapping只会记录字段的类型,不会记录是否是数组,也就是说如果是int数组,es的mapping只是记录成int。当sparksql读取的规范是先获取数据类型,定义好dataframe的格式,然后再从数据源抽取数据。这就导致dataframe的某个字段类型是int,但读取数据的时候硬生生想把int数组放进去

解决

在options里加一个es.read.field.as.array.include,标明数组字段: "es.read.field.as.array.include" -> "xx,yy",如果是object里的某个字段,写成"object名字.数组字段名字",如果是多个字段,字段名之间用逗号分隔

### 回答1: Spark SQL 可以通过 Elasticsearch-Hadoop 插件来读写 Elasticsearch。该插件提供了一个 Elasticsearch 数据源,可以将 Elasticsearch 中的数据作为 Spark SQL 表进行查询和分析。 要使用 Elasticsearch-Hadoop 插件,需要在 Spark 配置文件中添加以下配置: ``` spark.es.nodes=<Elasticsearch 节点 IP> spark.es.port=<Elasticsearch 节点端口> ``` 然后,可以使用 Spark SQL 的 DataFrame API 或 SQL API 来读写 Elasticsearch 数据。以下是一些示例代码: ``` // 读取 Elasticsearch 中的数据 val df = spark.read.format("org.elasticsearch.spark.sql") .option("es.resource", "<Elasticsearch 索引>/<Elasticsearch 类型>") .load() // 将 DataFrame 中的数据写入 Elasticsearch df.write.format("org.elasticsearch.spark.sql") .option("es.resource", "<Elasticsearch 索引>/<Elasticsearch 类型>") .save() ``` 需要注意的是,Elasticsearch-Hadoop 插件的版本需要与 Elasticsearch 版本匹配。具体的版本对应关系可以参考官方文档。 ### 回答2: Spark SQL是一款强大的数据处理工具,可以实现对不同数据源的读取和处理,而Elasticsearch是一款流行的开源搜索引擎,在构建实时搜索和分析系统时非常有用。Spark SQL可以轻松地与Elasticsearch集成,方便地进行数据读取和写入操作。下面我们将详细介绍Spark SQL读写Elasticsearch的过程。 一、安装Spark Elasticsearch插件 在使用Spark SQL读写Elasticsearch之前,我们需要安装相应的插件以便于连接和处理数据。最常用的插件是elasticsearch-hadoop,我们可以使用以下命令进行安装: ``` bin/spark-shell --packages org.elasticsearch:elasticsearch-hadoop:7.10.2 ``` 其中,7.10.2是插件的版本。如果已经使用了其他版本的Spark,则需要使用相应的版本。 二、读取Elasticsearch数据 接下来我们将介绍如何使用Spark SQL从Elasticsearch读取数据。首先,我们需要将Elasticsearch数据加载到Spark SQL中,可以使用以下代码: ```scala import org.apache.spark.sql.SparkSession val spark = SparkSession .builder() .appName("ElasticsearchReader") .getOrCreate() val df = spark .read .format("org.elasticsearch.spark.sql") .option("es.nodes.wan.only", "true") .option("es.port", "9200") .option("es.nodes", "localhost") .load("index_name/_doc") ``` 其中,“org.elasticsearch.spark.sql”是Elasticsearch访问插件的格式,我们可以使用“option”配置来指定Elasticsearch的连接信息。这里我们使用“wan.only”选项将访问IP地址设置为公网IP,使用“port”选项将端口设置为9200,使用“nodes”选项将节点设置为本地主机。 最后,我们使用“load”方法将索引名和文档类型加载到Spark中。 三、写入数据Elasticsearch 除了读取数据Spark SQL还可以将数据写入Elasticsearch。我们可以使用以下代码将Spark数据框中的数据写入Elasticsearch: ```scala import org.apache.spark.sql.SparkSession val spark = SparkSession .builder() .appName("ElasticsearchWriter") .getOrCreate() val df = Seq((1,"John"),(2,"Tom"),(3,"Lisa")) .toDF("id", "name") df.write .format("org.elasticsearch.spark.sql") .option("es.nodes.wan.only", "true") .option("es.port", "9200") .option("es.nodes", "localhost") .mode("append") .save("index_name/_doc") ``` 这里我们使用了一个简单的数据框,将数据写入Elasticsearch。首先,我们使用“toDF”方法将数据集转换为Spark数据框。我们然后使用“write”方法将数据框保存到Elasticsearch中。我们同样可以使用“option”配置来指定Elasticsearch的连接信息。最后,我们使用“mode”方法设置写入模式并使用“save”方法写入数据。 四、用Spark SQL进行Elasticsearch聚合分析 使用Spark SQL读写Elasticsearch之后,我们可以使用Spark SQL的聚合分析功能对数据进行处理和分析。例如,我们可以使用以下代码来计算所有文档的平均值: ```scala import org.apache.spark.sql.SparkSession val spark = SparkSession .builder() .appName("ElasticsearchAnalyzer") .getOrCreate() val df = spark .read .format("org.elasticsearch.spark.sql") .option("es.nodes.wan.only", "true") .option("es.port", "9200") .option("es.nodes", "localhost") .load("index_name/_doc") df.groupBy("name").mean("age") ``` 这里我们使用了GroupBy和mean方法,来计算所有文档的平均值。这块相信你们做学术翻译肯定没问题,不过我有个问题,Elasticsearch是支持SQL查询的,那么我们在使用Spark SQL连接Elasticsearch的时候,就存在SQL的冲突吧,怎么解决呢? ### 回答3: Spark SQL是一种在Spark框架下的高性能、分布式、可扩展的SQL查询引擎。Spark SQL支持通过读写各种数据源来查询数据,其中包括Elasticsearch,这使得它成为在大规模数据上进行分析和探索的有力工具之一。 读取Elasticsearch数据源 在Spark SQL中,可以使用Elasticsearch连接器读取Elasticsearch数据源。连接器提供了从Elasticsearch读取数据的功能,并将其转换为RDD、DataFrame或Dataset。 在读取Elasticsearch数据源时,可以使用Elasticsearch Connector提供的选项和参数,例如索引和类型名称、查询条件、要检索的字段等。下面是一个使用连接器读取Elasticsearch数据源的示例: ```scala import org.elasticsearch.spark.sql._ val cfg = Map( "es.nodes" -> "localhost", "es.port" -> "9200", "es.index.auto.create" -> "true" ) // 配置选项 val df = spark.read.options(cfg).format("org.elasticsearch.spark.sql").load("INDEX_NAME/TYPE_NAME") df.show() ``` 在这个示例中,我们使用 `org.elasticsearch.spark.sql` 格式来指定数据源,然后使用 Spark SQL `read()` 方法读取 Index/Type 名称为 `index_name/type_name` 的 Elasticsearch 数据源。 写入Elasticsearch数据源 除了读取Spark SQL也提供了将数据写入Elasticsearch的机制。可以使用与读取相同的Elasticsearch连接器来写入数据。以下是一个使用连接器将数据写入Elasticsearch的示例: ```scala import org.elasticsearch.spark.sql._ val cfg = Map( "es.nodes" -> "localhost", "es.port" -> "9200", "es.index.auto.create" -> "true" ) // 配置选项 // 创建一个 DataFrame 对象 val data = Seq( ("1", "John"), ("2", "Jane"), ("3", "Bob") ).toDF("id","name") data.write.options(cfg).format("org.elasticsearch.spark.sql").mode("overwrite").save("INDEX_NAME/TYPE_NAME") ``` 在这个示例中,我们首先创建一个 DataFrame 对象 `data`,然后使用与读取相同的连接器来写入数据到 Index/Type 名称为 `index_name/type_name` 的 Elasticsearch 数据源。 关于Spark SQL和Elasticsearch的更多信息和示例,可以参见官方文档和社区资源。总之,使用Spark SQL连接Elasticsearch是一种强大而灵活的方法,可以为分析和数据挖掘等场景提供很大的帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值