机器学习-分类度量(classification metric)常用评价指标

本文深入探讨了机器学习中常见的评估指标,包括准确率、精确率、召回率、F1分数、ROC曲线等,详细解释了这些指标的计算方式及在不同场景下的应用,为模型选择和优化提供了理论依据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. 评判指标存在的目的
  2. 应用场景
  3. 混淆矩阵
  4. accuracy =(TP+TN)/(TP+TN+FP+FN)
  5. precision =TP/(TP+FP)
  6. recall 召回率=真阳性率(True Positive Rate,TPR)=灵敏度(Sensitivity)=(TP/TP+FN)
  7. P-R曲线=precision recall curve
  8. 真阴性率(True Negative Rate,TNR),特异度(Specificity)=TN/(TN+FP)
  9. F1-Score=2precisionrecall/(precision+recall)
  10. 假阴性率(False Negatice Rate,FNR)=1 - 灵敏度(Sensitivity)=FN/(TP+FN)
  11. 假阳性率(False Positice Rate,FPR)= 1 - 特异度(Specificity)=FP/(FP+TN)
  12. ROC曲线=接收者操作特征曲线(receiver operating characteristic curve)
  13. 曲线下面积(Area Under Curve)
  14. 多分类问题
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值