逻辑回归二分类与softmax多分类方法实现

逻辑回归与Softmax详解

逻辑回归

  • 逻辑回归本质是线性回归,只是在求解结果的时候加了一层函数映射,将连续值映射到0和1上,达到分类的目的。

Sigmoid函数

g(z)=11+e−z{g(z)=\frac{1}{1+e^{-z}}}g(z)=1+ez1
g′(z)=(11+e−z)′=e−z(1+e−z)2=g(z)⋅(1−g(z)){g'(z)=(\frac{1}{1+e^{-z}}})'=\frac{e^{-z}}{(1+e^{-z})^2}=g(z) \cdot (1-g(z))g(z)=(1+ez1)=(1+ez)2ez=g(z)(1g(z))
在这里插入图片描述

  • sigmoid函数的导数在x=0.5x=0.5x=0.5处达到最大值,这就意味着预测值在0.5附近时,可以更快的进行下降,将预测值更加贴近于0或1的数值。

对数回归的假设函数如下,线性回归假设函数只是θTx\theta^TxθTx
hθ(x)=g(θTx)=11+e−θTxh_\theta(x)=g(\theta^Tx)=\frac{1}{1+e^{-\theta^{T}x}}hθ(x)=g(θTx)=1+eθTx1

为什么使用Sigmoid函数

首先,如果一个概率分布可以表示成:p(y;η)=b(y)exp⁡(ηTT(y)−a(η))p(y ; \eta)=b(y) \exp \left(\eta^{T} T(y)-a(\eta)\right)p(y;η)=b(y)exp(ηTT(y)a(η))
,那么这个概率分布可以称为指数分布。

  • 说明:伯努利分布,高斯分布,泊松分布,贝塔分布,狄特里特分布都属于指数分布。
    而在对数回归时,即加一层Sigmoid函数映射,采用的就是伯努利分布,其概率可以表示成:p(y;ϕ)=ϕy(1−ϕ)1−y=exp⁡(ylog⁡ϕ+(1−y)log⁡(1−ϕ))=exp⁡((log⁡(ϕ1−ϕ))y+log⁡(1−ϕ))\begin{aligned} p(y ; \phi) &=\phi^{y}(1-\phi)^{1-y} \\ &=\exp (y \log \phi+(1-y) \log (1-\phi)) \\ &=\exp \left(\left(\log \left(\frac{\phi}{1-\phi}\right)\right) y+\log (1-\phi)\right) \end{aligned}p(y;ϕ)=ϕy(1ϕ)1y=exp(ylogϕ+(1y)log(1ϕ))=exp((log(1ϕϕ))y+log(1ϕ))
    其中,η=log⁡(ϕ1−ϕ)\eta=\log(\frac{\phi}{1-\phi})η=log(1ϕϕ),由此得到ϕ=11+eη\phi=\frac{1}{1+e^{\eta}}ϕ=1+eη1
    这就是为什么对数回归的时候要使用Sigmoid函数。

逻辑回归损失函数

  • 当事件已经发生了,而未知参数等于多少时,能让这个事情发生的概率最大,执果索因
  • 如果想要让所计算的结果更准确,就可以将每次计算的记过进行相乘,让最后的概率最大即可

即极大似然估计法,这里介绍两种损失函数,一种是0、1作为分类标签,一种是以1、-1作为分类标签。

  • 第一种损失函数(y_{i]}为标签值)
    • 某样本属于正例的概率可以表示为:P(y=1∣x)=exp⁡(w⋅x)1+exp⁡(w⋅x)P(y=1 | x)=\frac{\exp (w \cdot x)}{1+\exp (w \cdot x)}P(y=1x)=1+exp(wx)exp(wx)
    • 某样本属于负例的概率可以表示为:P(y=0∣x)=11+exp⁡(w⋅x)P(y=0 | x)=\frac{1}{1+\exp (w \cdot x)}P(y=0x)=1+exp(wx)1
    • 似然函数为:∏i=1N[P(y=1∣xi)]yi[P(y=0∣xi)]1−yi\prod_{i=1}^{N}\left[\mathrm{P}\left(\mathrm{y}=1 | x_{i}\right)\right]^{y_{i}}\left[\mathrm{P}\left(\mathrm{y}=0 | x_{i}\right)\right]^{1-y_{i}}i=1N[P(y=1xi)]yi[P(y
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

梚枫_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值