背景:在 pyspark中udf写法及其使用中我们使用pyspark定义好的udf逐条处理数据(dataframe)。这篇文章提供一种“并行”调用udf的方法。
from pyspark.sql import Row
from pyspark.sql.types import StringType, StructField, StructType
# udf定义
def proc_func(row):
row_dict = row.asDict(True) # 将rdd转化成字典格式
col_1 = row_dict['col_1']
new_col = 'proc_{}'.format(col_1)
row_dict['new_col'] = new_col
return Row(**row_dict)
# 定义输出字段
output_struct = StructType([
StructField('col_1', StringType()),
StructField('new_col', StringType())
])
# 调用udf
your_df = your_df.rdd.map(proc_func) # 需要将DataFrame转为rdd
# 将处理结果再解析为Dataframe
your_df = spark.createDataFrame(your_df.map(
lambda row: Row(
row.col_1,
row.new_col
)
), output_struct
)
其他补充,以下是几个常见的类型
from pyspark.sql.types import IntegerType, StringType, ArrayType
# int型
IntegerType()
# list型
ArrayType(IntegerType()) # int list
ArrayType(StringType()) # string list
使用这种方式,会大大减少数据计算时间。