图神经网络学习

资料:

飞桨AI Studio - 人工智能学习实训社区 (baidu.com)

花一天时间看完即可...

在文本中,有图关系,可以用.

入门

目的:训练一个图模型,使得该图模型可以区分图上的黄色节点和绿色节点。

特征作为图的节点,颜色就是图的分类。

图的度的概念:与节点相连的条数。

 邻接表记录的是后续邻居的信息;

在新闻推荐中,节点是用户和新闻,用户会有一些特征,新闻也会有一些特征。

边也会有自己的特征,比如用户阅读新闻的阅读时长、点击频率等;

图游走类模型

 图游走类算法的目标:

学习出图中每个节点的低维表示。

 图游走类算法对标nlp中的word2vec。

(因为图中的节点会受其邻居的影响,所以可以使用word2vec的思想)

 P(下一个要选择的节点|当前的节点)=  {如果vx有边相连,就加入候选集里面

N(v)邻居节点的个数

 多个随机游走+word2vec

 

 

 

元路径的每个路径都要是有意义的,不然会导致模型在训练时候不能将节点在图中的意义表示训练出来.

元路径是对称的;

 课节4: 图神经网络算法(一)

 

 

0号节点的信息的更新:是来自0号,1号,2号节点的信息进行相加来更新的

 

 用度:衡量边的权重信息也就是节点的信息

 

特征*权重 就是每个特征对于目标节点的 (放缩后的)特征

课节5: 图神经网络算法(二)

采样的节点不要是互不相连的,不要是孤立点.

学习资料:

pyg-team/pytorch_geometric: Graph Neural Network Library for PyTorch (github.com)

上述是pytroch版本的图神经网络~ 

  • 图卷积网络(Graph Convolution Networks): https://towardsdatascience.com/how-to-do-deep-learning-on-graphs-with-graph-convolutional-networks-7d2250723780

  • 图和流形上的几何深度学习(Geometric Deep Learning on Graphs and Manifolds):http://www.geometricdeeplearning.com/

  • 一个可以提供帮助的MOOC:https://www.edx.org/course/advanced-algorithmics-and-graph-theory-with-python

  • 斯坦福图学习入门课程cs224w——图网络机器学习算法:http://cs224w.stanford.edu/

  • cs224w课程视频可在https://www.bilibili.com/video/av30039828

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值