资料:
飞桨AI Studio - 人工智能学习实训社区 (baidu.com)
花一天时间看完即可...
在文本中,有图关系,可以用.
入门
目的:训练一个图模型,使得该图模型可以区分图上的黄色节点和绿色节点。
特征作为图的节点,颜色就是图的分类。
图的度的概念:与节点相连的条数。
邻接表记录的是后续邻居的信息;
在新闻推荐中,节点是用户和新闻,用户会有一些特征,新闻也会有一些特征。
边也会有自己的特征,比如用户阅读新闻的阅读时长、点击频率等;
图游走类模型
图游走类算法的目标:
学习出图中每个节点的低维表示。
图游走类算法对标nlp中的word2vec。
(因为图中的节点会受其邻居的影响,所以可以使用word2vec的思想)
P(下一个要选择的节点|当前的节点)= {如果vx有边相连,就加入候选集里面
N(v)邻居节点的个数
多个随机游走+word2vec
元路径的每个路径都要是有意义的,不然会导致模型在训练时候不能将节点在图中的意义表示训练出来.
元路径是对称的;
课节4: 图神经网络算法(一)
0号节点的信息的更新:是来自0号,1号,2号节点的信息进行相加来更新的
用度:衡量边的权重信息也就是节点的信息
特征*权重 就是每个特征对于目标节点的 (放缩后的)特征
课节5: 图神经网络算法(二)
采样的节点不要是互不相连的,不要是孤立点.
学习资料:
pyg-team/pytorch_geometric: Graph Neural Network Library for PyTorch (github.com)
上述是pytroch版本的图神经网络~
-
图卷积网络(Graph Convolution Networks): https://towardsdatascience.com/how-to-do-deep-learning-on-graphs-with-graph-convolutional-networks-7d2250723780
-
图和流形上的几何深度学习(Geometric Deep Learning on Graphs and Manifolds):http://www.geometricdeeplearning.com/
-
一个可以提供帮助的MOOC:https://www.edx.org/course/advanced-algorithmics-and-graph-theory-with-python
-
斯坦福图学习入门课程cs224w——图网络机器学习算法:http://cs224w.stanford.edu/
-
cs224w课程视频可在https://www.bilibili.com/video/av30039828