图神经网络实战(12)——图同构网络
0. 前言
Weisfeiler-Leman (WL) 测试提供了一个理解图神经网络 (Graph Neural Networks, GNN) 表达能力的框架,利用该框架我们比较了不同的 GNN 层,在本节中,我们将利用 WL 测试结果尝试设计比图卷积网络 (Graph Convolutional Network, GCN)、图注意力网络 (Graph Attention Networks,GAT) 和 GraphSAGE 更强大的 GNN 架构——图同构网络 (Graph Isomorphism Network, GIN)。然后,使用
本文介绍了图同构网络(GIN)的原理,其受Weisfeiler-Leman测试启发,具有更强的图结构区分能力。通过与GCN的性能比较,展示在图分类任务上的优势。文中详细阐述了如何构建GIN模型,并在PROTEINS数据集上执行图分类,结果显示GIN的准确率优于GCN。
订阅专栏 解锁全文
449

被折叠的 条评论
为什么被折叠?



