图神经网络实战(12)——图同构网络(Graph Isomorphism Network, GIN)

本文介绍了图同构网络(GIN)的原理,其受Weisfeiler-Leman测试启发,具有更强的图结构区分能力。通过与GCN的性能比较,展示在图分类任务上的优势。文中详细阐述了如何构建GIN模型,并在PROTEINS数据集上执行图分类,结果显示GIN的准确率优于GCN。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0. 前言

Weisfeiler-Leman (WL) 测试提供了一个理解图神经网络 (Graph Neural Networks, GNN) 表达能力的框架,利用该框架我们比较了不同的 GNN 层,在本节中,我们将利用 WL 测试结果尝试设计比图卷积网络 (Graph Convolutional Network, GCN)图注意力网络 (Graph Attention Networks,GAT) GraphSAGE 更强大的 GNN 架构——图同构网络 (Graph Isomorphism Network, GIN)。然后,使用

评论 105
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值