图神经网络实战(12)——图同构网络
0. 前言
Weisfeiler-Leman (WL) 测试提供了一个理解图神经网络 (Graph Neural Networks, GNN) 表达能力的框架,利用该框架我们比较了不同的 GNN
层,在本节中,我们将利用 WL
测试结果尝试设计比图卷积网络 (Graph Convolutional Network, GCN)、图注意力网络 (Graph Attention Networks,GAT) 和 GraphSAGE 更强大的 GNN
架构——图同构网络 (Graph Isomorphism Network
, GIN
)。然后,使用