JZOJ4877. 力场护盾

本文介绍了一种寻找坐标系中点的最优路径算法。通过转换坐标轴减少方向限制,并利用最长不下降子序列的方法求解最大点数路径。适用于向量夹角不超过180度的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目大意

给出坐标系中的 n 个点和两个向量(x1,y1),(x2,y2)。找出一条路径使得路径上每一个点都在上一个点为源点,以两个向量为夹角的区域内。
求路径最多经过的点数。

Data Constraint
n200000180°

题解

考虑以向量 (x1,y1),(x2,y2) 来重新建立坐标轴,这样一来就少了方向的限制。
剩下的就是找出最长的一条路径使得经过的点横、纵坐标不减。这个可以先排序,然后求最长不下降子序列。

时间复杂度: O(nlogn)

SRC

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std ;

#define N 200000 + 10
typedef long long ll ;
struct Point {
    ll x , y ;
    Point ( ll X = 0 , ll Y = 0 ) { x = X , y = Y ; }
} P[N] , P1 , P2 ;
struct Note {
    ll v ;
    int h ;
} tp[N] ;

int T[4*N] ;
ll a[N] ;
int n , ret , ans ;

ll operator * ( Point a , Point b ) { return a.x * b.y - b.x * a.y ; }

bool cmp1( Point a , Point b ) { return a.x < b.x || ( a.x == b.x && a.y < b.y ) ; }

bool cmp2( Note a , Note b ) { return a.v < b.v ; }

ll Dist( Point a , Point l ) {
    return abs(a * l) ;
}

void Search( int v , int l , int r , int x , int y ) {
    if ( l == x && r == y ) {
        ret = max( ret , T[v] ) ;
        return ;
    }
    int mid = (l + r) / 2 ;
    if ( y <= mid ) Search( v + v , l , mid , x , y ) ;
    else if ( x > mid ) Search( v + v + 1 , mid + 1 , r , x , y ) ;
    else {
        Search( v + v , l , mid , x , mid ) ;
        Search( v + v + 1 , mid + 1 , r , mid + 1 , y ) ;
    }
}

void Insert( int v , int l , int r , int x , int val ) {
    if ( l == x && r == x ) {
        T[v] = max( T[v] , val ) ;
        return ;
    }
    int mid = (l + r) / 2 ;
    if ( x <= mid ) Insert( v + v , l , mid , x , val ) ;
    else Insert( v + v + 1 , mid +  1 , r , x , val ) ;
    T[v] = max( T[v+v] , T[v+v+1] ) ;
}

int main() {
    freopen( "shield.in" , "r" , stdin ) ;
    freopen( "shield.out" , "w" , stdout ) ;
    scanf( "%d" , &n ) ;
    scanf( "%lld%lld%lld%lld" , &P1.x , &P1.y , &P2.x , &P2.y ) ;
    if ( P1.x == 0 || P2.x == 0 ) {
        if ( P1.x == 0 ) swap( P1 , P2 ) ;
    }
    else if ( (double)(P1.y / P1.x) * (P2.y / P2.x)  < 0 ) {
        if ( (double)P1.y / P1.x > (double)P2.y / P2.x ) swap( P1 , P2 ) ;
    } else {
        if ( (double)P1.y / P1.x < (double)P2.y / P2.x ) swap( P1 , P2 ) ;
    }
    for (int i = 1 ; i <= n ; i ++ ) {
        scanf( "%lld%lld" , &P[i].x , &P[i].y ) ;
        Point NP ;
        NP.x = ((P[i] * P1) < 0 ? -1 : 1) * Dist( P[i] , P1 ) ;
        NP.y = ((P[i] * P2) < 0 ? 1 : -1) * Dist( P[i] , P2 ) ;
        P[i] = NP ;
    }
    sort( P + 1 , P + n + 1 , cmp1 ) ;
    for (int i = 1 ; i <= n ; i ++ ) a[i] = P[i].y , tp[i].v = a[i] , tp[i].h = i ;
    sort( tp + 1 , tp + n + 1 , cmp2 ) ;
    int Cnt = 0 ;
    tp[0].v = -1e15 ;
    for (int i = 1 ; i <= n ; i ++ ) {
        if ( tp[i].v != tp[i-1].v ) Cnt ++ ;
        a[tp[i].h] = Cnt ;
    }
    for (int i = 1 ; i <= n ; i ++ ) {
        ret = 0 ;
        Search( 1 , 1 , n , 1 , a[i] ) ;
        ans = max( ans , ret + 1 ) ;
        Insert( 1 , 1 , n , a[i] , ret + 1 ) ;
    }
    printf( "%d\n" , ans ) ;
    return 0 ;
}

以上.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值