题目大意
给出坐标系中的
n
个点和两个向量
求路径最多经过的点数。
Data Constraint
n≤200000,向量夹角≤180°
题解
考虑以向量
(x1,y1),(x2,y2)
来重新建立坐标轴,这样一来就少了方向的限制。
剩下的就是找出最长的一条路径使得经过的点横、纵坐标不减。这个可以先排序,然后求最长不下降子序列。
时间复杂度: O(nlogn)
SRC
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std ;
#define N 200000 + 10
typedef long long ll ;
struct Point {
ll x , y ;
Point ( ll X = 0 , ll Y = 0 ) { x = X , y = Y ; }
} P[N] , P1 , P2 ;
struct Note {
ll v ;
int h ;
} tp[N] ;
int T[4*N] ;
ll a[N] ;
int n , ret , ans ;
ll operator * ( Point a , Point b ) { return a.x * b.y - b.x * a.y ; }
bool cmp1( Point a , Point b ) { return a.x < b.x || ( a.x == b.x && a.y < b.y ) ; }
bool cmp2( Note a , Note b ) { return a.v < b.v ; }
ll Dist( Point a , Point l ) {
return abs(a * l) ;
}
void Search( int v , int l , int r , int x , int y ) {
if ( l == x && r == y ) {
ret = max( ret , T[v] ) ;
return ;
}
int mid = (l + r) / 2 ;
if ( y <= mid ) Search( v + v , l , mid , x , y ) ;
else if ( x > mid ) Search( v + v + 1 , mid + 1 , r , x , y ) ;
else {
Search( v + v , l , mid , x , mid ) ;
Search( v + v + 1 , mid + 1 , r , mid + 1 , y ) ;
}
}
void Insert( int v , int l , int r , int x , int val ) {
if ( l == x && r == x ) {
T[v] = max( T[v] , val ) ;
return ;
}
int mid = (l + r) / 2 ;
if ( x <= mid ) Insert( v + v , l , mid , x , val ) ;
else Insert( v + v + 1 , mid + 1 , r , x , val ) ;
T[v] = max( T[v+v] , T[v+v+1] ) ;
}
int main() {
freopen( "shield.in" , "r" , stdin ) ;
freopen( "shield.out" , "w" , stdout ) ;
scanf( "%d" , &n ) ;
scanf( "%lld%lld%lld%lld" , &P1.x , &P1.y , &P2.x , &P2.y ) ;
if ( P1.x == 0 || P2.x == 0 ) {
if ( P1.x == 0 ) swap( P1 , P2 ) ;
}
else if ( (double)(P1.y / P1.x) * (P2.y / P2.x) < 0 ) {
if ( (double)P1.y / P1.x > (double)P2.y / P2.x ) swap( P1 , P2 ) ;
} else {
if ( (double)P1.y / P1.x < (double)P2.y / P2.x ) swap( P1 , P2 ) ;
}
for (int i = 1 ; i <= n ; i ++ ) {
scanf( "%lld%lld" , &P[i].x , &P[i].y ) ;
Point NP ;
NP.x = ((P[i] * P1) < 0 ? -1 : 1) * Dist( P[i] , P1 ) ;
NP.y = ((P[i] * P2) < 0 ? 1 : -1) * Dist( P[i] , P2 ) ;
P[i] = NP ;
}
sort( P + 1 , P + n + 1 , cmp1 ) ;
for (int i = 1 ; i <= n ; i ++ ) a[i] = P[i].y , tp[i].v = a[i] , tp[i].h = i ;
sort( tp + 1 , tp + n + 1 , cmp2 ) ;
int Cnt = 0 ;
tp[0].v = -1e15 ;
for (int i = 1 ; i <= n ; i ++ ) {
if ( tp[i].v != tp[i-1].v ) Cnt ++ ;
a[tp[i].h] = Cnt ;
}
for (int i = 1 ; i <= n ; i ++ ) {
ret = 0 ;
Search( 1 , 1 , n , 1 , a[i] ) ;
ans = max( ans , ret + 1 ) ;
Insert( 1 , 1 , n , a[i] , ret + 1 ) ;
}
printf( "%d\n" , ans ) ;
return 0 ;
}
以上.