GPT-3 API接口调用

import os
import openai

#
# openai.api_key = "sk-t你自己的API key"

# response = openai.Completion.create(
#   model="text-davinci-003",
#   #prompt="Translate this into 1. French, 2. Spanish and 3. Japanese:\n\nWhat rooms do you have available?\n\n1.",
#   prompt="Translate this into English:\n\n操你妈呀!\n\n1.",
#   temperature=0.3,
#   max_tokens=100,
#   top_p=1.0,
#   frequency_penalty=0.0,
#   presence_penalty=0.0
# )
# print(response)






# # openai.api_key = os.getenv("sk-t你自己的API key"") # 这个会报错
# openai.api_key = "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" # 这个不报错

# response = openai.Completion.create(
#   model="text-davinci-003",
#   prompt="I am a highly intelligent question answering bot. If you ask me a question that is rooted in truth, I will give you the answer. If you ask me a question that is nonsen
### GPT-Sovits API 调用方法 GPT-Sovits 是一种基于语音合成技术的模型,其主要功能是将文本转换为高质量的语音输出。为了实现这一目标,通常需要通过特定的接口API)来调用该模型的功能。以下是关于如何通过 API 调用 GPT-Sovits 的详细介绍。 #### 1. 安装依赖库 在开始之前,需确保已安装必要的 Python 库以及相关工具链。可以通过以下命令完成环境准备: ```bash pip install torch numpy scipy soundfile gradio fastapi uvicorn pydantic requests ``` 这些库主要用于处理音频数据、构建 Web 接口以及发送 HTTP 请求[^3]。 #### 2. 配置服务器端 GPT-Sovits 提供了一个本地运行的服务端脚本 `server.py`,此脚本会启动 FastAPI 服务并监听指定端口上的请求。具体操作如下: - 将项目克隆到本地: ```bash git clone https://gitcode.com/gh_mirrors/tt/TTS-for-GPT-soVITS.git cd TTS-for-GPT-soVITS ``` - 启动服务端程序: ```bash python server.py --port 7860 ``` 此时,FastAPI 已经部署完毕,默认情况下会在 `http://localhost:7860` 上提供 RESTful API 接口。 #### 3. 发送 POST 请求 客户端可以向上述 URL 地址发起 POST 方法请求以获取结果。下面是一个简单的 Python 实现案例: ```python import requests url = 'http://localhost:7860/api/v1/synthesize' headers = {'Content-Type': 'application/json'} payload = { "text": "你好,欢迎使用GPT-Sovits。", "speaker_id": 0, "format": "wav" } response = requests.post(url, headers=headers, json=payload) if response.status_code == 200: with open('output.wav', 'wb') as f: f.write(response.content) else: print(f'Error: {response.text}') ``` 在此代码片段中定义了三个参数:输入文字 (`text`)、说话者 ID (`speaker_id`) 和期望返回的声音文件格式 (`format`)。成功执行后将会保存一段名为 `output.wav` 的 WAV 文件至当前工作目录下[^2]。 #### 4. 流式传输支持 如果希望实时接收生成的数据而不是等待整个过程结束再下载,则可以选择启用流模式。这通常适用于长时间连续播放场景或者低延迟需求的应用场合。例如修改上面的例子加入额外字段即可开启流式选项: ```json { ... "streaming": true } ``` 当设置 `"streaming"` 参数为 True 时,每次接收到的部分都会立即被写入磁盘或其他存储介质之中[^4]。 --- ### 注意事项 尽管以上步骤能够帮助快速上手 GPT-Sovits 的基本功能,但在实际应用过程中还需要注意一些细节问题,比如性能优化、错误处理机制设计等方面的内容都需要进一步深入研究探索。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

德彪稳坐倒骑驴

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值