加载已训练好的目标检测YOLOv8,v5,v3,v6模型,对数据集中某张图片中的object打上方框、标出类别,并将图片保存到本地

该教程介绍了如何在Python环境中运用Ultralytics的YOLOv8模型对图像进行标注。首先,从Ultralytics导入YOLO库,然后加载预训练模型yolov8n.pt。接着,打开一张名为bus.jpg的照片进行标注,并将标注后的图像保存至本地。最后,打印出结果。

参考的教程:Python - Ultralytics YOLOv8 Docs

在与ultralytics代码同一层级下新建 predict.py

 里面写下面的内容。运行即可

from ultralytics import YOLO
from PIL import Image
import cv2

# 加载计划使用的模型
model = YOLO("yolov8n.pt")  # load a pretrained model (recommended for training)

# 加载被标注的照片
im1 = Image.open("bus.jpg")

# 完成标注并保存到本地
results = model.predict(source=[im1], save=True)  # save plotted images
# results = model.predict(source=[im1], save=True)  # save plotted images

print(results)

 

参考yolov1 v2 v3 v4 v5 v6 v7 v8的相关介绍,给我写一个类似结构的yolov9的介绍,返回给我latex代码: \section{YOLOv7} YOLOv7是Chien-Yao Wang等人在2022年提出的高效单阶段目标检测器,在保持实时性的同时显著提升了检测精度。其核心创新包括\textbf{扩展高效层聚合网络}、\textbf{模型重参数化策略}和\textbf{动态标签分配技术},在速度和精度之间实现了更好的平衡。该模型在V100 GPU上达到161 FPS的推理速度,同时COCO mAP达到51.4\%,成为实时目标检测的新标杆。 \subsection{架构设计} 1. \textbf{骨干网络:扩展高效层聚合网络(E-ELAN)}: \begin{itemize} \item 通过控制梯度路径的完整性,增强网络学习能力 \item 采用分组卷积和通道重排技术提升特征复用效率 \item 结构公式:$Y = \text{concat}[\text{GroupConv}_1(X), \text{GroupConv}_2(X), \dots, \text{GroupConv}_k(X)]$ \end{itemize} 2. \textbf{颈部结构:基于级联的模型缩放}: \begin{itemize} \item 深度缩放:调整CSP模块的层数 \item 宽度缩放:调整通道数 \item 特征金字塔采用\textbf{PAFPN}结构,引入\textbf{重参数化卷积} \end{itemize} 3. \textbf{重参数化设计}: \begin{itemize} \item 训练时:使用多分支结构(如3×3卷积、1×1卷积和恒等连接) \item 推理时:合为单个3×3卷积核,提升速度 \[ W_{\text{fused}} = W_{3\times3} + \text{pad}(W_{1\times1}) + \text{to\_conv}(\text{identity}) \] \end{itemize} \subsection{训练优化技术} 1. \textbf{动态标签分配策略}: \begin{itemize} \item \textbf{Coarse-to-Fine引导标签分配}:同时考虑粗匹配和细匹配 \item \textbf{软标签加权}:根据预测质量动态调整损失权重 \[ w_i = \text{IoU}(b_i, \hat{b}) \times \text{置信度} \] \end{itemize} 2. \textbf{数据增强}: \begin{itemize} \item \textbf{Mosaic}:四图像拼接增强 \item \textbf{MixUp}:两幅图像线性混合 \item \textbf{Random affine}:随机旋转、平移和缩放 \end{itemize} 3. \textbf{损失函数设计}: \begin{itemize} \item \textbf{边界框损失}:SIoU(考虑角度、距离和形状) \[ L_{\text{box}} = 1 - \text{IoU} + \frac{\Delta_{\text{angle}} + \Delta_{\text{dist}} + \Delta_{\text{shape}}}{3} \] \item \textbf{置信度损失}:二元交叉熵 \item \textbf{类别损失}:标签平滑的交叉熵 \end{itemize} \subsection{检测机制创新} 1. \textbf{复合缩放策略}: \begin{itemize} \item 同时缩放骨干网络、颈部网络和检测头 \item 缩放因子:$\phi = \{\text{width}, \text{depth}, \text{resolution}\}$ \item 不同规模模型YOLOv7-tiny, YOLOv7, YOLOv7-W6 \end{itemize} 2. \textbf{辅助训练头}: \begin{itemize} \item 在训练过程中引入辅助检测头,增强梯度流 \item 推理时仅保留主检测头,不影响速度 \end{itemize} 3. \textbf{重参数化卷积}: \begin{lstlisting}[language=Python] # 重参数化卷积训练与推理 class RepConv(nn.Module): def __init__(self, in_channels, out_channels): super().__init__() self.conv3x3 = ConvBN(in_channels, out_channels, 3) self.conv1x1 = ConvBN(in_channels, out_channels, 1) self.identity = nn.Identity() if in_channels==out_channels else None def forward(self, x): if self.training: # 训练模式 out = self.conv3x3(x) out += self.conv1x1(x) if self.identity: out += self.identity(x) return out else: # 推理模式 # 融合卷积核 fused_kernel = self._fuse_conv() return F.conv2d(x, fused_kernel, ...) def _fuse_conv(self): # 将1x1卷积核padding成3x3 conv1x1_padded = F.pad(self.conv1x1.weight, [1,1,1,1]) # 合3x3和1x1卷积核 fused = self.conv3x3.weight + conv1x1_padded # 如果有恒等连接,则加上单位矩阵 if self.identity: identity_kernel = torch.eye(fused.shape[0], dtype=fused.dtype) identity_kernel = identity_kernel.view(fused.shape[0], fused.shape[0], 1, 1) identity_kernel = F.pad(identity_kernel, [1,1,1,1]) * 0.5 fused += identity_kernel return fused \end{lstlisting} \subsection{性能对比} \begin{table}[htbp] \centering \caption{YOLOv7与其他模型性能对比(COCO test-dev)} \begin{tabular}{cccccc} \hline 模型 & mAP & AP50 & AP75 & 速度(FPS) & 输入尺寸 \\ \hline YOLOv4 & 43.5 & 65.7 & 47.3 & 62 & 640×640 \\ YOLOR & 48.0 & 67.2 & 52.5 & 41 & 640×640 \\ YOLOv7 & \textbf{51.4} & \textbf{69.7} & \textbf{55.9} & \textbf{114} & 640×640 \\ \hline \end{tabular} \end{table} 1. \textbf{核心优势}: \begin{itemize} \item 在相同速度下,精度比YOLOv4提升8.9% \item 在V100上达到114 FPS的实时检测速度 \item 支持多种规模模型,满足不同硬件需求 \end{itemize} 2. \textbf{创新点总结}: \begin{itemize} \item \textbf{E-ELAN}:可扩展的高效网络结构 \item \textbf{模型重参数化}:训练时多分支,推理时单分支 \item \textbf{动态标签分配}:提升正样本质量 \end{itemize} 3. \textbf{应用场景}: \begin{itemize} \item 实时视频分析系统 \item 移动端和边缘设备部署 \item 大规模工业检测 \end{itemize} \section{YOLOv8} YOLOv8是Ultralytics团队于2023年推出的新一代实时目标检测框架,作为YOLO系列的最新里程碑,它在架构设计、训练策略和部署效率等方面实现了全面突破。该模型采用\textbf{可扩展的模块化架构}、\textbf{锚框无关的检测机制}和\textbf{多任务统一优化},在保持实时性的同时实现了SOTA精度。YOLOv8支持目标检测、实例分割和姿态估计等多项任务,在COCO数据集上达到53.9\% mAP,同时实现T4 GPU上1230 FPS的推理速度。 \subsection{架构设计} 1. \textbf{可扩展骨干网络}: \begin{itemize} \item 基于\textbf{C2f模块}(融合CSP与跨阶段残差连接): \[ \text{C2f}(X) = \text{Concat}[\text{Conv}(X), \text{Bottleneck}_1(X), \dots, \text{Bottleneck}_n(X)] \] \item 引入\textbf{空间金字塔快速池化(SPPF)}: \[ \text{SPPF}(x) = \text{Concat}[\text{MaxPool}(x,5), \text{MaxPool}(x,9), \text{MaxPool}(x,13), x] \] \item 支持五种规模:n/s/m/l/x(参数量2.3M~68.2M) \end{itemize} 2. \textbf{任务自适应颈部}: \begin{itemize} \item \textbf{动态特征金字塔网络(DFPN)}:根据任务类型自动调整特征融合权重 \[ w_i = \sigma(\text{MLP}(\text{GAP}(f_i))) \] \item \textbf{多尺度上下文聚合}:通过空洞卷积扩大感受野 \item \textbf{轻量化注意力机制}:通道注意力与空间注意力行 \end{itemize} 3. \textbf{解耦检测头}: \begin{itemize} \item 分离式预测分支:分类、定位、置信度独立优化 \item \textbf{动态标签分配(DTA)}:根据训练状态调整正负样本比例 \[ \text{正样本比例} = \alpha \cdot (1 - e^{-\beta \cdot \text{epoch}}) \] \end{itemize} \subsection{训练优化技术} 1. \textbf{自适应训练策略}: \begin{table}[htbp] \centering \caption{YOLOv8训练策略配置} \begin{tabular}{ccc} \hline 训练阶段 & 学习率策略 & 数据增强 \\ \hline 预热期(0-100 epoch) & 线性增长 & Mosaic+MixUp \\ 稳定期(100-300 epoch) & Cosine退火 & RandomAffine \\ 微调期(300-500 epoch) & 指数衰减 & 仅基础增强 \\ \hline \end{tabular} \end{table} 2. \textbf{损失函数创新}: \begin{itemize} \item \textbf{DFL损失}:分布焦点损失替代传统回归 \[ \mathcal{L}_{\text{DFL}} = -\sum_{i=1}^{n} (y_i \log(s_i) + (1-y_i)\log(1-s_i)) \] \item \textbf{VFL分类损失}:变焦焦点损失解决类别不平衡 \[ \mathcal{L}_{\text{VFL}} = \begin{cases} -q(q\log(p) + (1-q)\log(1-p)) & \text{正样本} \\ -\alpha p^\gamma \log(1-p) & \text{负样本} \end{cases} \] \end{itemize} 3. \textbf{知识蒸馏策略}: \begin{lstlisting}[language=Python] # 多教师蒸馏实现 def distillation_loss(student, teachers, inputs): s_out = student(inputs) losses = [] for teacher in teachers: with torch.no_grad(): t_out = teacher(inputs) # 特征层KL散度 loss_feat = F.kl_div(s_out['feat'], t_out['feat']) # 输出层KL散度 loss_out = F.kl_div(s_out['cls'], t_out['cls']) losses.append(0.7*loss_feat + 0.3*loss_out) return sum(losses)/len(losses) \end{lstlisting} \subsection{检测机制创新} 1. \textbf{锚框无关设计}: \begin{itemize} \item 直接预测目标中心偏移量:$(\Delta x, \Delta y, w, h)$ \item 动态匹配机制:根据宽高比和距离自动选择正样本 \[ \text{match\_score} = \lambda \cdot \text{IoU} + (1-\lambda) \cdot \text{dist\_ratio} \] \end{itemize} 2. \textbf{多任务统一头}: \begin{itemize} \item 共享特征提取:90\%参数复用 \item 任务特定子网:检测/分割/姿态估计独立分支 \item 统一输出格式:$[x,y,w,h,\text{conf},\text{class},\text{mask\_coeff},\text{keypoints}]$ \end{itemize} 3. \textbf{高效后处理}: \begin{itemize} \item \textbf{动态NMS}:根据目标密度调整IoU阈值 \[ \text{IoU}_{\text{thresh}} = \max(0.4, 0.7 - 0.3 \times \text{density}) \] \item \textbf{矩阵非极大抑制(Matrix NMS)}:行处理提升3倍速度 \end{itemize} \subsection{性能对比} \begin{table}[htbp] \centering \caption{YOLOv8性能对比(COCO val2017)} \begin{tabular}{cccccc} \hline 模型 & mAP & 参数量(M) & 速度(FPS) & 输入尺寸 & 任务支持 \\ \hline YOLOv7 & 51.4 & 36.9 & 114 & 640×640 & 检测 \\ YOLOv8s & \textbf{53.9} & 11.1 & \textbf{1230} & 640×640 & 检测+分割+姿态 \\ \hline \end{tabular} \end{table} 1. \textbf{核心创新}: \begin{itemize} \item \textbf{统一架构}:单模型支持检测/分割/姿态估计 \item \textbf{训练加速}:混合精度训练速度提升4.2倍 \item \textbf{部署优化}:支持ONNX/TensorRT/OpenVINO \end{itemize} 2. \textbf{关键代码实现}: \begin{lstlisting}[language=Python] # C2f模块实现 class C2f(nn.Module): def __init__(self, c1, c2, n=1): super().__init__() self.cv1 = Conv(c1, c2, 1) self.m = nn.ModuleList( Bottleneck(c2, c2) for _ in range(n)) def forward(self, x): y = list(self.cv1(x).chunk(2, 1)) y.extend(m(y[-1]) for m in self.m) return torch.cat(y, 1) \end{lstlisting} 3. \textbf{应用场景}: \begin{itemize} \item 实时自动驾驶感知系统 \item 工业质检多任务检测 \item 移动端实时AR应用 \end{itemize}
08-21
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

德彪稳坐倒骑驴

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值