PSO变体在Sphere函数优化中的比较分析(附完整算法Python代码)

#1024程序员节 | 征文#
在这里插入图片描述

摘要

本研究比较了四种粒子群优化(PSO)算法变体在优化Sphere函数方面的性能:标准PSO(SPSO)、自适应PSO(APSO)、改进的带突变PSO(IPSOM)和混合PSO(HPSO)。通过对这些算法的收敛速度、最终精度和计算复杂度进行分析,我们发现APSO在整体性能上表现最佳,而HPSO在特定情况下显示出独特优势。

1. 引言

粒子群优化(PSO)算法是一种广泛应用于连续优化问题的群智能算法。自Kennedy和Eberhart在1995年提出以来,PSO已经衍生出多种变体。本研究旨在比较四种主要的PSO变体在优化经典的Sphere函数时的性能。

Sphere函数定义如下:

f

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Albert_Lsk

今天又能喝柠檬茶啦

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值