【Matlab算法】牛顿法(Newton‘s Method)(附MATLAB完整代码)

牛顿法(Newton's Method)

前言

牛顿法 (Newton’s Method) 是一种迭代优化算法,用于求解无约束优化问题中的局部最小值。它通过使用目标函数的二阶导数信息来逼近最优解,并在每次迭代中更新当前估计的最优解。以下是关于牛顿法的详细描述:

  1. 初始化参数:选择一个初始点 x ( 0 ) x^{(0)} x(0) 作为优化的起始点。
  2. 选优过程:
  • 对于每次迭代 t t t :
  • 计算目标函数 f ( x ( t ) ) f\left(x^{(t)}\right) f(x(t)) 在当前点 x ( t ) x^{(t)} x(t) 处的梯度 ∇ f ( x ( t ) ) \nabla f\left(x^{(t)}\right) f(x(t)) 和 Hessian 矩阵 ∇ 2 f ( x ( t ) ) \nabla^2 f\left(x^{(t)}\right) 2f(x(t))
  • 解牛顿方程 ∇ 2 f ( x ( t ) ) δ x ( t ) = − ∇ f ( x ( t ) ) \nabla^2 f\left(x^{(t)}\right) \delta x^{(t)}=-\nabla f\left(x^{(t)}\right) 2f(x(t))δx(t)=f(x(t)) ,其中 δ x ( t ) \delta x^{(t)} δx(t) 是更新的步长。
  • 更新参数: x ( t + 1 ) = x ( t ) + δ x ( t ) x^{(t+1)}=x^{(t)}+\delta x^{(t)} x(t+1)=x(t)+δx(t)
  1. 停止条件: 检查是否满足停止条件。可能的停止条件包括:
  • 达到预定的迭代次数。
  • 梯度的范数小于某个容许误差。
  • 更新的参数变化小于某个容许误差。
  1. 输出结果:输出最终的参数 x ( t ) x^{(t)} x(t) ,以及在最优点的目标函数值 f ( x ( t ) ) f\left(x^{(t)}\right) f(x(t))

牛顿法相较于梯度下降法的优点在于:

  • 快速收敛:在一些情况下,牛顿法能够更快地收敛到最优解。
  • 充分利用二阶奮息:通过使用目标函数的二阶导数信息,提供了更多关于函数形状的信息。

然而,牛顿法也有一些缺点:

  • 计算开销大:计算和存储 Hessian 矩阵可能很昂贵,尤其在高维问题中。
  • 可能陷入局部最小值: 由于牛顿法是一个局部优化方法,初始点的选择可能导致陷入局部最小值。

为了解决一些计算开销大的问题,有一些变种的牛顿法,如拟牛顿法 (Quasi-Newton Methods),其中不需要显式计算 Hessian 矩阵。

正文

使用牛顿法计算目标函数 f ( x ) = x ( 1 ) 2 + x ( 2 ) 2 − 2 x ( 1 ) x ( 2 ) + sin ⁡ ( x ( 1 ) ) + f(x)=x(1)^2+x(2)^2-2 x(1) x(2)+\sin (x(1))+ f(x)=x(1)2+x(2)22x(1)x(2)+sin(x(1))+ cos ⁡ ( x ( 2 ) ) \cos (x(2)) cos(x(2)) 的过程如下:

  1. 初始化参数:选择一个初始点 x ( 0 ) x^{(0)} x(0) 作为优化的起始点。
  2. 选代过程:
  • 对于每次迭代 t t t :
  • 计算目标函数在当前点 x ( t ) x^{(t)} x(t) 处的梯度和 Hessian 矩阵。
    ∇ f ( x ( t ) ) = [ 2 x 1 − 2 x 2 + cos ⁡ ( x 1 ) 2 x 2 − 2 x 1 − sin ⁡ ( x 2 ) ] ∇ 2 f ( x ( t ) ) = [ 2 − sin ⁡ ( x 1 ) − 2 − 2 2 − cos ⁡ ( x 2 ) ] \begin{aligned} & \nabla f\left(x^{(t)}\right)=\left[\begin{array}{cc} 2 x_1-2 x_2+\cos \left(x_1\right) \\ 2 x_2-2 x_1-\sin \left(x_2\right) \end{array}\right] \\ & \nabla^2 f\left(x^{(t)}\right)=\left[\begin{array}{cc} 2-\sin \left(x_1\right) & -2 \\ -2 & 2-\cos \left(x_2\right) \end{array}\right] \end{aligned} f(x(t))=[2x12x2+cos(x1)2x22x1sin(x2)]2f(x(t))=[2sin(x1)222cos(x2)]
  • 解牛顿方程 ∇ 2 f ( x ( t ) ) δ x ( t ) = − ∇ f ( x ( t ) ) \nabla^2 f\left(x^{(t)}\right) \delta x^{(t)}=-\nabla f\left(x^{(t)}\right) 2f(x(t))δx(t)=f(x(t)) ,得到更新的步长 δ x ( t ) \delta x^{(t)} δx(t)
    [ 2 − sin ⁡ ( x 1 ) − 2 − 2 2 − cos ⁡ ( x 2 ) ] [ δ x 1 ( t ) δ x 2 ( t ) ] = − [ 2 x 1 − 2 x 2 + cos ⁡ ( x 1 ) 2 x 2 − 2 x 1 − sin ⁡ ( x 2 ) ] \left[\begin{array}{cc} 2-\sin \left(x_1\right) & -2 \\ -2 & 2-\cos \left(x_2\right) \end{array}\right]\left[\begin{array}{l} \delta x_1^{(t)} \\ \delta x_2^{(t)} \end{array}\right]=-\left[\begin{array}{l} 2 x_1-2 x_2+\cos \left(x_1\right) \\ 2 x_2-2 x_1-\sin \left(x_2\right) \end{array}\right] [2sin(x1)222cos(x2)][δx1(t)δx2(t)]=[2x12x2+cos(x1)2x22x1sin(x2)]
  • 更新参数: x ( t + 1 ) = x ( t ) + δ x ( t ) x^{(t+1)}=x^{(t)}+\delta x^{(t)} x(t+1)=x(t)+δx(t)
  1. 停止条件:检查是否满足停止条件。可能的停止条件包括:
  • 达到预定的迭代次数。
    ・梯度的范数小于某个容许误差。
  • 更新的参数变化小于某个容许误差。
  1. 輸出结果: 输出最终的参数 x ( t ) x^{(t)} x(t) ,以及在最优点的目标函数值 f ( x ( t ) ) f\left(x^{(t)}\right) f(x(t))

这个过程中的关键步骤是计算梯度和 Hessian 矩阵,然后解牛顿方程以获得更新的步长。牛顿法使用了目标函数的二阶信息,因此在一些情况下,它可能更快地收敛到最优解。但需要注意,牛顿法的计算开销可能很大,尤其是在高维问题中。

代码实现

% 定义目标函数
f = @(x) x(1)^2 + x(2)^2 - 2*x(1)*x(2) + sin(x(1)) + cos(x(2));

% 定义目标函数的梯度
grad_f = @(x) [2*x(1) - 2*x(2) + cos(x(1)); 2*x(2) - 2*x(1) - sin(x(2))];

% 定义目标函数的 Hessian 矩阵
hessian_f = @(x) [2 - sin(x(1)), -2; -2, 2 - cos(x(2))];

% 设置参数
max_iterations = 1000;
tolerance = 1e-6;

% 初始化起始点
x = [0; 0];

% 存储迭代过程中的参数和目标函数值
history_x = zeros(2, max_iterations);
history_f = zeros(1, max_iterations);

% 牛顿法迭代
for iteration = 1:max_iterations
    % 计算梯度和 Hessian 矩阵
    gradient = grad_f(x);
    hessian = hessian_f(x);
    
    % 解牛顿方程并更新参数
    delta_x = -inv(hessian) * gradient;
    x = x + delta_x;
    
    % 存储迭代过程中的参数和目标函数值
    history_x(:, iteration) = x;
    history_f(iteration) = f(x);
    
    % 检查停止条件
    if norm(gradient) < tolerance
        break;
    end
end

% 可视化迭代过程
figure;
subplot(2, 1, 1);
plot(1:iteration, history_x(1, 1:iteration), '-o', 'LineWidth', 1.5);
hold on;
plot(1:iteration, history_x(2, 1:iteration), '-o', 'LineWidth', 1.5);
title('参数迭代过程');
legend('x(1)', 'x(2)');
xlabel('迭代次数');
ylabel('参数值');

subplot(2, 1, 2);
plot(1:iteration, history_f(1:iteration), '-o', 'LineWidth', 1.5);
title('目标函数值迭代过程');
xlabel('迭代次数');
ylabel('目标函数值');

% 显示最终结果
fprintf('最优解: x = [%f, %f]\n', x(1), x(2));
fprintf('f(x)的最优值: %f\n', f(x));
fprintf('迭代次数: %d\n', iteration);

迭代可视化

请添加图片描述

  • 22
    点赞
  • 33
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
牛顿下山法是一种非线性优化算法,旨在寻找一个函数的最小值点。以下是一个使用Matlab编写的牛顿下山法的简单示例代码。 ```matlab function [x_opt, f_opt] = newton_method(f, grad, hess, x0, tol) % 牛顿下山法函数 % 输入参数: % f - 目标函数 % grad - 目标函数的梯度 % hess - 目标函数的Hessian矩阵 % x0 - 初始猜测点 % tol - 容忍误差 % 输出参数: % x_opt - 最优解 % f_opt - 最优解对应的目标函数值 x = x0; x_opt = x0; f_opt = f(x0); while abs(grad(x)) >= tol p = -hess(x) \ grad(x); % 计算牛顿下山法的方向 alpha = backtrack(f, grad, p, x); % 使用回溯直线搜索计算步长 x = x + alpha * p; % 迭代更新新的解 if f(x) < f_opt x_opt = x; f_opt = f(x); end end end function alpha = backtrack(f, grad, p, x) % 回溯直线搜索函数 % 输入参数: % f - 目标函数 % grad - 目标函数的梯度 % p - 下降方向 % x - 当前点 % 输出参数: % alpha - 步长 alpha = 1; % 初始步长 c = 0.5; % 回溯直线搜索参数 rho = 0.5; % 回溯直线搜索参数 while f(x + alpha*p) > f(x) + c * alpha * grad(x)' * p alpha = rho * alpha; % 更新步长 end end ``` 上述代码中,`f`是目标函数,`grad`是目标函数的梯度,`hess`是目标函数的Hessian矩阵,`x0`是初始猜测点,`tol`是容忍误差。函数`newton_method`使用牛顿下山法迭代更新解,并返回最优解`x_opt`和最优解对应的目标函数值`f_opt`。函数`backtrack`使用回溯直线搜索方法来计算步长`alpha`。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Albert_Lsk

今天又能喝柠檬茶啦

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值